www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorrechnung II
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Vektorrechnung II
Vektorrechnung II < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:00 So 20.11.2005
Autor: sunshinenight

Hallo

Habe wieder mal ein paar Fragen zu folgender Aufgabe:

Gegeben sind die Eckpunkte eines Dreiecks [mm] P_{1}(-1;0;1) [/mm] ; [mm] P_{2}(0;1;0) [/mm] ; [mm] P_{3}(1;1;0) [/mm] und der Punkt [mm] P_{4}(2;3;0) [/mm]

a) Bestimmen Sie die Hessesche Normalform der Ebene E, in der das Dreieck liegt.

Als Ebenengleichung habe ich: -y-z =-1
Danach habe ich das Kreuzpordukt von [mm] P_{1}P_{2} [/mm] mit [mm] P_{1}P_{3} [/mm] gebildet und erhalten: [mm] (0;-1;-1)^{T} [/mm]
Demzufolge wäre n ja dann: [mm] n=\bruch{1}{\wurzel{2}} (0;1;1)^{T} [/mm] ,da ja Rho größer 0 sein muss, oder?

Da würde die HNF ja wie folgt lauten:
[mm] \bruch{y}{\wurzel{2}}+\bruch{z}{\wurzel{2}}=\bruch{1}{\wurzel{2}} [/mm]

b) Berechnen sie den Flächeninhalt des Dreiecks

A= [mm] \bruch{1}{2} |P_{1}P_{2} [/mm] x [mm] P_{1}P_{3} [/mm] |
A= [mm] \bruch{1}{2} \wurzel{2} [/mm]

c) Bestimmen Sie den Fußpunkt des Lotes von [mm] P_{4} [/mm] auf E und den Abstand des Punktes [mm] P_{4} [/mm] von E

Habe mir eine Gerade durch den Punkt [mm] P_{4} [/mm] und der Richtung des Normalenvektors der Ebene aufgestellt. Diese habe ich dann in E eingesetzt und r=1 erhalten. Mit dem r habe ich dann [mm] P_{LF} [/mm] erhalten mit den Koordinaten: [mm] P_{LF}(2;2;-1) [/mm]

Abstand:
[mm] d(P_{LF})= |\bruch{1}{\wurzel{2}}-(-\bruch{2}{\wurzel{2}}-\bruch{3}{\wurzel{2}}) [/mm] |
[mm] d(P_{LF})=\bruch{6}{\wurzel{2}} [/mm]

Glaub das ist falsch, oder? Habe grad beim Abschreiben gemerkt, dass ich ja einfach den Vektor [mm] P_{4}P_{LF} [/mm] bilden muss und davon dann den Betrag bestimmen und das sollte [mm] \wurzel{2} [/mm] sein.

d) Bestimmen Sie auf der Geraden durch die Punkte [mm] P_{1} [/mm] und [mm] P_{4} [/mm] einen Punkt [mm] P_{5} [/mm] derart, dass das Volumen des von [mm] P_{1},P_{2},P_{3} [/mm] und [mm] P_{5} [/mm] aufgespannten Tetraeders gleich 1 ist.

Die Gerade lautet
[mm] x=\vektor{-1\\0\\1}+r\vektor{3\\3\\-1} [/mm]
Volumen vom Tetraeder ist ja: [mm] V=\bruch{1}{6} [/mm] |(axb)c |
[mm] a=P_{1}P_{2} [/mm]
[mm] b=P_{1}P_{3} [/mm]
[mm] c=P_{1}P_{5}=\vektor{x+1\\y-0\\z-1} [/mm]
[mm] axb=\vektor{0\\-1\\-1} [/mm]

Dann komme ich ja mit der Volumengleichung auf:
6= |-y-z+1 | und hier weiss ich jetzt nicht wie ich weiter vorgehen soll, mal angenommen, dass es bis hierhin stimmt.

Wäre dankbar für Hilfe bzw. Korrektur
sunshinenight


        
Bezug
Vektorrechnung II: Kontrolle
Status: (Antwort) fertig Status 
Datum: 18:03 So 20.11.2005
Autor: MathePower

Hallo sunshinenight,

> Hallo
>  
> Habe wieder mal ein paar Fragen zu folgender Aufgabe:
>  
> Gegeben sind die Eckpunkte eines Dreiecks [mm]P_{1}(-1;0;1)[/mm] ;
> [mm]P_{2}(0;1;0)[/mm] ; [mm]P_{3}(1;1;0)[/mm] und der Punkt [mm]P_{4}(2;3;0)[/mm]
>  
> a) Bestimmen Sie die Hessesche Normalform der Ebene E, in
> der das Dreieck liegt.
>  
> Als Ebenengleichung habe ich: -y-z =-1
>  Danach habe ich das Kreuzpordukt von [mm]P_{1}P_{2}[/mm] mit
> [mm]P_{1}P_{3}[/mm] gebildet und erhalten: [mm](0;-1;-1)^{T}[/mm]
>  Demzufolge wäre n ja dann: [mm]n=\bruch{1}{\wurzel{2}} (0;1;1)^{T}[/mm]

[ok]

> ,da ja Rho größer 0 sein muss, oder?

Was ist [mm]\rho[/mm]?

>  
> Da würde die HNF ja wie folgt lauten:
>  
> [mm]\bruch{y}{\wurzel{2}}+\bruch{z}{\wurzel{2}}=\bruch{1}{\wurzel{2}}[/mm]
>  
> b) Berechnen sie den Flächeninhalt des Dreiecks
>  
> A= [mm]\bruch{1}{2} |P_{1}P_{2}[/mm] x [mm]P_{1}P_{3}[/mm] |
>  A= [mm]\bruch{1}{2} \wurzel{2}[/mm]

[ok]

>  
> c) Bestimmen Sie den Fußpunkt des Lotes von [mm]P_{4}[/mm] auf E und
> den Abstand des Punktes [mm]P_{4}[/mm] von E
>  
> Habe mir eine Gerade durch den Punkt [mm]P_{4}[/mm] und der Richtung
> des Normalenvektors der Ebene aufgestellt. Diese habe ich
> dann in E eingesetzt und r=1 erhalten. Mit dem r habe ich
> dann [mm]P_{LF}[/mm] erhalten mit den Koordinaten: [mm]P_{LF}(2;2;-1)[/mm]
>  
> Abstand:
>  [mm]d(P_{LF})= |\bruch{1}{\wurzel{2}}-(-\bruch{2}{\wurzel{2}}-\bruch{3}{\wurzel{2}})[/mm]
> |
>  [mm]d(P_{LF})=\bruch{6}{\wurzel{2}}[/mm]
>  
> Glaub das ist falsch, oder? Habe grad beim Abschreiben
> gemerkt, dass ich ja einfach den Vektor [mm]P_{4}P_{LF}[/mm] bilden
> muss und davon dann den Betrag bestimmen und das sollte
> [mm]\wurzel{2}[/mm] sein.

Ja, das mußt Du dann nochmal machen.

>  
> d) Bestimmen Sie auf der Geraden durch die Punkte [mm]P_{1}[/mm] und
> [mm]P_{4}[/mm] einen Punkt [mm]P_{5}[/mm] derart, dass das Volumen des von
> [mm]P_{1},P_{2},P_{3}[/mm] und [mm]P_{5}[/mm] aufgespannten Tetraeders gleich
> 1 ist.
>  
> Die Gerade lautet
>  [mm]x=\vektor{-1\\0\\1}+r\vektor{3\\3\\-1}[/mm]
>  Volumen vom Tetraeder ist ja: [mm]V=\bruch{1}{6}[/mm] |(axb)c |
> [mm]a=P_{1}P_{2}[/mm]
>  [mm]b=P_{1}P_{3}[/mm]
>  [mm]c=P_{1}P_{5}=\vektor{x+1\\y-0\\z-1}[/mm]
>  [mm]axb=\vektor{0\\-1\\-1}[/mm]
>  
> Dann komme ich ja mit der Volumengleichung auf:
>  6= |-y-z+1 | und hier weiss ich jetzt nicht wie ich weiter
> vorgehen soll, mal angenommen, dass es bis hierhin stimmt.

Setze für den c den Richtungsvektor der Geraden ein.

[mm]c\;=\;P_1P_5\;=\;P_1\;+\;r\;\vec{3\\3\\-1}\;-\;P_1\;=\;r\;\vec{3\\3\\-1}[/mm]

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]