www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisVerbandstheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Verbandstheorie
Verbandstheorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verbandstheorie: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 16:53 Mo 23.01.2006
Autor: Pumpkin1983

Aufgabe
Untersuchen Sie ob es sich um einen Verband handelt.
Gegeben: M={2,3,4,5,6,7,12,25} mit R="|", also Teilerrelation.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich hab die Aufgabe schon probiert, nur hab ich im Grunde ein Verständnisproblem des ganzen.

Lösung (nicht komplett):
die Paare stehen dann in der Relation bei aRb mit [mm] a\*n=b [/mm] mit n [mm] \in [/mm] nat. Zahlen (ohne Null).

Also

R={(2,2),(2,4),(2,6),(2,12),(3,3),(3,6),(3,12),(4,4),(4,12),(5,5),(5,25),(6,6),(6,12),(7,7),
(12,12),(25,25)}

Die Definition vom Verband lautet ja:
Eine halbgeordnete Menge M ist Verband :  [mm] \gdw [/mm] zu jeder nichtleeren Teilmenge B  [mm] \subseteq [/mm] M in M sowohl das Infimum ( [mm] inf_{M}B) [/mm] existiert und das Supremum ( [mm] sup_{M}B) [/mm] existiert.

Wenn ich mir nun die Relationspaare (a,b) anschaue, würde
ich als Lösung sagen, da es bei a=7 kein b gibt (da [mm] a\not=b [/mm] sein muss)
und bei a=12 kein b gibt (da [mm] a\not=b [/mm] sein muss -> siehe Frage 2)
ist kein volständiger Verband. Wäre das vollkommen richtig ???


Nun weiss ich nicht weiter...
1. Frage: beim Verband handelt es sich ja um eine 2 elementige Teilmenge
    B={a,b}. Heisst das jetzt das jetzt a  [mm] \not= [/mm] b sein muss oder Nicht.
    Ich denk mir nämlich, beim Verband handelt es sich um eine 2 elementige
    Teilmenge und wenn a=b wäre, dann wäre die Menge ja nicht mehr
    2 elementig. Also fällt das ja raus oder nicht und bedeutet somit, dass
    a [mm] \not= [/mm] b sein MUSS oder nicht ???

2. Kann das Supremum auch gleichzeitig Infimum sein ???
    Bei (7,7) ist das Infimum ja 7 und das Supremum auch. Heisst das jetzt
    bei 7 ist das Infimum gleich dem Supremum oder bedeutet das wenn
    sup=inf, das 7 gar kein Supremum, Infimum hat ???



        
Bezug
Verbandstheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mo 23.01.2006
Autor: mathiash

Hallo,

also die Grundmenge ist [mm] \{2,3,4,5,6,7,12,25\}, [/mm] und es soll

[mm] a\leq [/mm] b     : gdw     a teilt b     gelten (Def. der Relation [mm] \leq). [/mm]

Frage ist dann: Erfuellt  die Grundmenge mit der Relation [mm] \leq [/mm] die Axiome fuer Verbaende.

Suprema und Infima fuer allg. Teilmengen der Grundmenge existieren i.a. nicht, aber
in Verbaenden natuerlich dann, wenn die Grundmenge endlich ist (zB hier).

Es muessten also hier auch [mm] \inf [/mm] M und sum M fuer
[mm] M=\{2,3,4,5,6,7.12,25\} [/mm] existieren, tun sie aber nicht

(denn zB   2 und 3 haben ggT 1, aber 1 ist nicht in M).

Also: Kein Verband !

Viele Gruesse,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]