www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Vereinfache Log-ausdrücke
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Vereinfache Log-ausdrücke
Vereinfache Log-ausdrücke < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfache Log-ausdrücke: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:25 Mo 09.10.2006
Autor: wiczynski777

Aufgabe
[mm] lg\wurzel{a²-b²}-lg(a+b)+\bruch{1}{2}(a-b) [/mm]
und
[mm] \bruch{1}{3}lg\wurzel{a²b}-\bruch{1}{6}lg\bruch{b^{4}}{a}+lg\wurzel[6]{a^{9}b^{3}} [/mm]

Kann mir mal jemand einen Tipp geben wie ich diese beiden Aufgaben lösen kann

        
Bezug
Vereinfache Log-ausdrücke: Logarithmusgesetze
Status: (Antwort) fertig Status 
Datum: 17:34 Mo 09.10.2006
Autor: Loddar

Hallo wiczynski!


Sieh Dir mal die MBLogarithmusgesetze an ... hier benötigst Du:

[mm] [quote]$\log_b\left(a^m\right) [/mm] \ = \ [mm] m*\log_b(a)$ [/mm]
[mm] $\log_b(x*y) [/mm] \ = \ [mm] \log_b(x)+\log_b(y)$ [/mm]
[mm] $\log_b\left(\bruch{x}{y}\right) [/mm] \ = \ [mm] \log_b(x)-\log_b(y)$[/quote] [/mm]

Damit kannst Du nun den ersten Term Deiner 1. Aufgabe wie folgt zerlegen:

[mm] $\lg\wurzel{a²-b²} [/mm] \ = \ [mm] \lg\left(a^2-b^2\right)^{\bruch{1}{2}} [/mm] \ = \ [mm] \bruch{1}{2}*\lg\left(a^2-b^2\right) [/mm] \ = \ [mm] \bruch{1}{2}*\lg[(a+b)*(a-b)] [/mm] \ =\ ...$


Kommst Du damit weiter?


Gruß
Loddar


Bezug
                
Bezug
Vereinfache Log-ausdrücke: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:16 Mo 09.10.2006
Autor: wiczynski777

Aufgabe
Also wenn ich das jetzt richtig verstanden habe kann ich annehmen ,dass die Klammer (a+b) mein u und (a-b) mein v ist und dann sieht die Aufgabe wie folgt aus:
[mm] \bruch{1}{2}lg(u*v)-lg(u)+\bruch{1}{2}(v) [/mm] und dann folgt daraus:
[mm] \bruch{1}{2}lg(u)+\bruch{1}{2}lg(v)-lg(u)+\bruch{1}{2}lg(v)= [/mm]
[mm] -\bruch{1}{2}lg(u)+lg(v) [/mm]
nach der Resubstitution bekomme ich
[mm] lg\bruch{a-b}{\wurzel{a+b}} [/mm]


Ist mein Gedankengang richtig?

Bezug
                        
Bezug
Vereinfache Log-ausdrücke: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Mo 09.10.2006
Autor: Herby

Hallo,


[daumenhoch] da kann man nix gegen sagen



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]