www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesVereinfachung einer quad. Gl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Vereinfachung einer quad. Gl.
Vereinfachung einer quad. Gl. < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachung einer quad. Gl.: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 21:58 Fr 17.08.2007
Autor: Vyse

Aufgabe
[mm] \bruch{2z+1}{z^{2}-4} [/mm] = [mm] \bruch{z+3}{z^{2}-3z+2} [/mm]

a) Bestimmen Sie ihren Definitionsbereich

b) Machen Sie die Gleichung nennerfrei (mit kgV der Nenner multiplizieren) und bestimmen Sie die Lösungsmenge der ursprünglichen Gleichung.

a) z [mm] \subset \IR \backslash [/mm] {-2;2;1}

Wahrscheinlich ist die Syntax der Angabe für den Definitionsbereich auch
nicht ganz korrekt.

b)
Hier liegt mein Anliegen um eine Lösungshilfe.
Mir schien die Aufgabe zu Beginn recht simpel und dennoch vermochte
ich sie auch nach langem herumprobieren nicht zu lösen.
Ich denke, dass der Fehler irgendwo zu beginn in einer versäumten
Vereinfachung liegt, woraus sich wahrscheinlich diese unnötig komplexen Terme ergaben.
Mein Lösungsversuch:

[mm] \bruch{2z+1}{z^{2}-4} [/mm] = [mm] \bruch{z+3}{z^{2}-3z+2} [/mm]   / [mm] *(z^{2}-3z+2) [/mm]
[mm] (z^{2}-3z+2)*\bruch{2z+1}{z^{2}-4} [/mm] = z+3                / [mm] *(z^{2}-4) [/mm]
[mm] (z^{2}-3z+2)*(2z+1) [/mm] = [mm] (z+3)*(z^{2}-4) [/mm]                        / ausmultiplizieren
[mm] 2z^{3}+z^{2}-6z^{2}-3z+4z+2 [/mm] = [mm] z^{3}-4z+3z^{2}-12 [/mm]
[mm] z^{3} [/mm] - [mm] 5z^{2}+z+2 [/mm] = [mm] 3z^{2}-4z-12 [/mm]                            / -4z-12
[mm] z^{3} [/mm] - [mm] 5z^{2}+5z+14 [/mm] = [mm] 3z^{2} [/mm]                                  / [mm] -3z^{2} [/mm]
[mm] z^{3} [/mm] - [mm] 8z^{2}+5z+14 [/mm] = 0

Man könnte evtl. noch ausklammern, danach
brachte mich keine weitere Überlegung zu einer
noch einfacheren Form.

[mm] z(z^{2}-8z+5)+14 [/mm] = 0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vereinfachung einer quad. Gl.: Tipps
Status: (Antwort) fertig Status 
Datum: 23:03 Fr 17.08.2007
Autor: Loddar

Hallo Vyse,

[willkommenmr] !!



>  a) z [mm]\subset \IR \backslash[/mm] {-2;2;1}

[ok]

  

> Wahrscheinlich ist die Syntax der Angabe für den
> Definitionsbereich auch nicht ganz korrekt.

Ich würde es etwas anders schreiben (aber nur etwas anders ;-) ):

$D \ = \ [mm] \IR [/mm] \ [mm] \backslash [/mm] \ [mm] \left\{ \ -2 \ ; \ 1 \ ; \ 2 \ \right\}$ [/mm]

  

> b)

> [mm]\bruch{2z+1}{z^{2}-4}[/mm] = [mm]\bruch{z+3}{z^{2}-3z+2}[/mm]   /  [mm]*(z^{2}-3z+2)[/mm]

Du kannst Dir die Sache erheblich vereinfachen, wenn Du Dir die Nenner in der faktoriserten Form aufschreibst:

[mm] $\bruch{2z+1}{(z+2)*(z-2)} [/mm] \ = \ [mm] \bruch{z+3}{(z-1)*(z-2)}$ [/mm]

Dann sieht man nämlich, dass die Multiplikation mit $(z-2)_$ ziemlich schnell geht:

[mm] $\bruch{2z+1}{z+2} [/mm] \ = \ [mm] \bruch{z+3}{z-1}$ [/mm]

Und nun mit $(z+2)*(z-1)_$ multiplizieren:

$(2z+1)*(z-1) \ = \ (z+3)*(z+2)$

Damit verbleibt auch eine quadratische Gleichung, die Du sicher lösen kannst ...


Gruß
Loddar


Bezug
                
Bezug
Vereinfachung einer quad. Gl.: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 10:06 Sa 18.08.2007
Autor: Vyse

Hallo, vielen Dank für die Antwort ^_^
Die Aufgabe konnte ich so mit Leichtigkeit lösen.
Ich übersehe wohl zu schnell, dass man gewisse
Terme in solche Faktoren zerlegen kann, wird man dann darauf hingewiesen, erscheint es natürlich als offensichtlich. <_<

Die Gleichung lässt sich noch wie folgt vereinfachen und lösen:

[mm] 2z^{2}-z-1 [/mm] = [mm] z^{2}+5z+6 [/mm]                / [mm] -z^{2},-5z-6 [/mm]
[mm] z^{2}-6z-7 [/mm] = 0

[mm] D=6^{2}-(-28)=64 [/mm]

[mm] x_{1}=\bruch{6+8}{2}=7 [/mm]
[mm] x_{2}=\bruch{6-8}{2}=-1 [/mm]

Grüsse, Vyse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]