www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeVerfahren zum lösen von GLS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Verfahren zum lösen von GLS
Verfahren zum lösen von GLS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verfahren zum lösen von GLS: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:49 Fr 13.04.2007
Autor: mindtrap

Aufgabe
Gesucht ist die Anzahl der Lösungen eines Gleichungssystems
[mm] $A^T [/mm] A X + [mm] A^T [/mm] B = 0$
Die Lösungen soll mit einem minimalen Betrag auf 8 Stellen genau berechnet werden. A ist dabei gegeben als eine n [mm] \times [/mm] m Matrix mit n > m und B in einem entsprechendem Format. Gesucht ist die Matrix X.

Für die Matrix A ist weiterhin definiert

[mm] a_{ik}=\begin{cases} a_{ik}, & \mbox{für } 2k -1 \le i \le 2k \\ 0, & \mbox{für } sonst \end{cases} [/mm]

Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bei diese Frage komme ich zur Zeit nicht weiter.
Bisher habe ich die [mm] a_{ik} [/mm] Nebenbedingung so interpretiert, dass eine Band-Matrix im folgenden Format entsteht.

A = [mm] \pmat{ a_{11} & 0 & 0 & 0 \\ a_{21} & 0 & 0 & 0 \\ 0 & a_{32} & 0 & 0 \\ 0 & a_{42} & 0 & 0} [/mm]

Allerdings ist mir nicht klar, wie ich diesen allgemeinen Fall bearbeiten soll.
Ich gehe davon aus, dass sich [mm] $A^T [/mm] A X + [mm] A^T [/mm] B = 0$ um eine umgestelle Form von $Ax=b$ handelt, wobei $B$ eine Lösungsmatrix und kein Lösungsvektor mehr ist.

Mein Idee war nun eine LU - Zerlegung (Gauss Algorithmus) dafür anzuwenden, allerdings kommt ich bei der Umsetzung zur Zeit nicht weiter. Hat jemand vielleicht für diesen oben geschilderten allgemeinen Fall eine Idee?

Danke und Gruss,

Gordon

        
Bezug
Verfahren zum lösen von GLS: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Fr 13.04.2007
Autor: Hund

Hallo,

versuch doch mal allgemein aufzuschreiben, wie die vorkommenden Matritzen aussehen müssen. (sowie du es bei A gemacht hast) Dann setzt du einfach ein und multiplizierst aus, so dass du ein Gleichungssystem hast. Durch umformen kommst du dann auf die gewöhnliche Form.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]