www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Verschieben des Graphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Verschieben des Graphen
Verschieben des Graphen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verschieben des Graphen: Erklärung
Status: (Frage) beantwortet Status 
Datum: 17:36 Mo 05.12.2005
Autor: Beliar

Hallo,
habeeine Frage zue Schreibweise der folgenden Aufgabe, der Graph soll um 4Einheiten nach unten verschoben werden. Die Gleichung lautet:
f(x) = ( x+3 [mm] )^2 [/mm]   die soll jetzt 4Einheiten tiefer schneiden. habe das so gemacht.
f(x) = ( x+3 [mm] )^2 [/mm] -4  dann erstmal die Klammer ausgerechnet und die -4 von c (Wert) subtrahiert.
f(x) = [mm] x^2 [/mm] +6x +9 -4 das macht dann
f(x) = [mm] x^2 [/mm] +6x +5
meine Frage ist das richtig so und kann man das kürzer schreiben?
Danke für jede Antwort
Beliar

        
Bezug
Verschieben des Graphen: alles ok!
Status: (Antwort) fertig Status 
Datum: 18:26 Mo 05.12.2005
Autor: informix

Hallo Beliar,
>  habe eine Frage zue Schreibweise der folgenden Aufgabe, der
> Graph soll um 4Einheiten nach unten verschoben werden. Die
> Gleichung lautet:
>  f(x) = ( x+3 [mm])^2[/mm]   die soll jetzt 4Einheiten tiefer
> schneiden. habe das so gemacht.
>  f(x) = ( x+3 [mm])^2[/mm] -4  dann erstmal die Klammer ausgerechnet
> und die -4 von c (Wert) subtrahiert.
>  f(x) = [mm]x^2[/mm] +6x +9 -4 das macht dann
> f(x) = [mm]x^2[/mm] +6x +5
>  meine Frage ist das richtig so und kann man das kürzer
> schreiben?

[daumenhoch] alles ok, das kann man nicht kürzer schreiben.

Gruß informix


Bezug
                
Bezug
Verschieben des Graphen: Ergänzung
Status: (Frage) beantwortet Status 
Datum: 18:44 Mo 05.12.2005
Autor: Beliar

wenn der Graph jetzt auf der x Achse verschoben wird finde ich den Buchstaben klein d  z.B f(x) = (x + [mm] d)^2 [/mm]   meine Frage wofür steht der Buchstabe

Bezug
                        
Bezug
Verschieben des Graphen: Erklärung
Status: (Antwort) fertig Status 
Datum: 18:59 Mo 05.12.2005
Autor: Loddar

Hallo Beliar!


Meinst Du jetzt, warum hierfür gerade der Buchtabe $d_$ gewählt wurde?

Ich denke, das kann man sich mit Differenz erklären.



Oder die grundsätzliche Bedeutung von $d_$ ?

Die Parabel $y \ =\ [mm] (x-d)^2$ [/mm] ist die Normalparabel, die um $+d_$ Einheiten nach rechts verschoben wurde.


Gruß
Loddar


Bezug
                                
Bezug
Verschieben des Graphen: Nachgefragt
Status: (Frage) beantwortet Status 
Datum: 19:46 Mo 05.12.2005
Autor: Beliar

Ich will das mal an diesem Beispiel zeigen, der Graph soll um 5 Einheiten nach rechts (also positive Richtung) verschoben werden Ausgangsfunktion:
f(x) = [mm] (x+3)^2 [/mm]
f(x) = [mm] ((x+3)^2 [/mm] - 5)
f(x) = [mm] (x-2)^2 [/mm]
allgemein heist es ja [mm] y=(x+d)^2 [/mm]
wann ist d das d der allgemein  d = +3-5  oder d= -2


Bezug
                                        
Bezug
Verschieben des Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Mo 05.12.2005
Autor: Zwerglein

Hi, Beliar,

> Ich will das mal an diesem Beispiel zeigen, der Graph soll
> um 5 Einheiten nach rechts (also positive Richtung)
> verschoben werden Ausgangsfunktion:
>  f(x) = [mm](x+3)^2[/mm]
>  f(x) = [mm]((x+3)^2[/mm] - 5)

Bemerkung 1: Das ist jetzt aber nicht mehr die Funktion f! Du solltest ihr daher einen neuen Namen geben, z.B. g(x)

Bemerkung 2: Du verschiebst auf diese Weise wieder um 5 nach unten!
Die 5 muss in die Klammer zum x:

g(x) = (x-5 + [mm] 3)^{2} [/mm] = g(x) = [mm] (x-2)^{2} [/mm]

>  f(x) = [mm](x-2)^2[/mm]

Aus Deinem Ansatz folgt das nicht! Rechne mal nach!

>  allgemein heist es ja [mm]y=(x+d)^2[/mm]
>  wann ist d das d der allgemein  d = +3-5  oder d= -2

Ehrlich gesagt: Ich verstehe Deine Frage nicht!

mfG!
Zwerglein  


Bezug
                                        
Bezug
Verschieben des Graphen: zeichnen ...
Status: (Antwort) fertig Status 
Datum: 14:34 Di 06.12.2005
Autor: informix

Hallo Beliar,

> Ich will das mal an diesem Beispiel zeigen, der Graph soll
> um 5 Einheiten nach rechts (also positive Richtung)
> verschoben werden Ausgangsfunktion:
>  f(x) = [mm](x+3)^2[/mm]
>  f(x) = [mm]((x+3)^2[/mm] - 5)

jetzt verschiebst du wieder um 5 nach unten

>  f(x) = [mm](x-2)^2[/mm]

und rechnest auch noch falsch!

>  allgemein heist es ja [mm]y=(x+d)^2[/mm]
>  wann ist d das d der allgemein  d = +3-5  oder d= -2
>  

[mm]f(x) = (x+3)^2 \rightarrow f_1(x) = ((x-5) +3)^2 = (x - 2)^2[/mm] ist die um 5 nach rechts (weiter) verschobene Parabel.

Hier habe ich die drei Funktionen mit []FunkyPlot gezeichnet:
$f(x) = [mm] x^2 \rightarrow [/mm] f(x) = [mm] (x+3)^2 \rightarrow [/mm] f(x) = [mm] ((x-5)+3)^2$ [/mm]

[Dateianhang nicht öffentlich]

Gruß informix



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]