www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationVerständnisproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Verständnisproblem
Verständnisproblem < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Sa 26.07.2008
Autor: Surfer

Hallo, habe mal ne Frage wenn ich ein Integral habe der Form:

[mm] \integral_{}^{}{sinh(x)sinh(x) dx} [/mm] komme ich ja im weiteren auf
= cosh(x)*sinh(x) - [mm] \integral_{}^{}{cosh(x)cosh(x) dx} [/mm]

jetzt weiss ich ja [mm] (cosh(x))^{2} [/mm] lässt sich auch schreiben als 1 - [mm] (sinh(x))^{2} [/mm] . Jetzt wollte ich es vorher einmal probieren ohne diese "Vereinfachung" zu integrieren, aber dann zieht sich der ganze Ausdruck immer ab irgendwie!

Wie würde es denn witergehen, wenn ich [mm] (cosh(x))^{2} [/mm] nicht durch 1 - [mm] (sinh(x))^{2} [/mm] ersetzen würde? also wie gesagt, bei mir zieht fällt dann alles wieder raus!

lg Surfer

        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Sa 26.07.2008
Autor: angela.h.b.


> Hallo, habe mal ne Frage wenn ich ein Integral habe der
> Form:
>  
> [mm]\integral_{}^{}{sinh(x)sinh(x) dx}[/mm] komme ich ja im weiteren
> auf
> = cosh(x)*sinh(x) - [mm]\integral_{}^{}{cosh(x)cosh(x) dx}[/mm]
>  
> jetzt weiss ich ja [mm](cosh(x))^{2}[/mm] lässt sich auch schreiben
> als 1 - [mm](sinh(x))^{2}[/mm]

Hallo,

diesen Sachverhalt solltest Du nochmal auf seinen Wahrheitsgehalt prüfen...

Du kannst das natürlich integrieren, indem Du auf die e-Funktion zurückgreifst.

Gruß v. Angela


Bezug
        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Sa 26.07.2008
Autor: schachuzipus

Hallo Surfer,

abgesehen von dem Fehler bei deiner Darstellung von [mm] $\cosh^2(x)$, [/mm] auf den Angela dich bereits hingewiesen hat, kannst du, wenn du's ohne diese Vereinfachung rechnen willst, mit der Definition von [mm] $\cosh(x)=\frac{e^x+e^{-x}}{2}$ [/mm] probieren, [mm] $\cosh^2(x)$ [/mm] ausrechnen und das verbleibende Intergal deiner partiellen Integraltion dann elementar berechnen.

Das gibt keinen länglichen Term ;-)



LG

schachuzipus

Bezug
                
Bezug
Verständnisproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 26.07.2008
Autor: Surfer

Hi,

ah ok hatte mich oben verschrieben
also bisher hab ich es immer so gerechnet:

[mm] \integral_{}^{}{sinh(x)*sinh(x) dx} [/mm] = [sinh(x) cosh(x)] - [mm] \integral_{}^{}{1 dx} [/mm] - [mm] \integral_{}^{}{sinh(x) sinh(x) dx} [/mm]
= [1/2 cosh(x) sinh(x) - x/2]

Und meine Frage war nun wie ich es ohne diese vereinfachung rechnen würde!

lg Surfer

Bezug
                        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Sa 26.07.2008
Autor: leduart

Hallo
warum was umstaendlicher machen, wenns auch einfach geht? Du hast doch schon 2 wege?
Aber integrier halt nochmal partiell, wenn es umstaendlich sein soll! Wenn man die Eigenschaft von fktnen, die man integrieren soll nicht ausnutzt, ist man ganz schoen....
du kannst auch [mm] x^3 [/mm] mit partieller integration oder mit substitution integrieren!
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]