www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikVerteilung Münzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - Verteilung Münzen
Verteilung Münzen < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung Münzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Mo 18.04.2022
Autor: Spica

Aufgabe
10 1€ Münzen und 10 2€ MÜnzen werden in beliebiger Reihenfolge nebeneinander auf den Tisch gelegt.
Behauptung: Nun gibt es in dieser Reihe immer 10 direkt aufeinanderfolgende Münzen, unter denen sich genau 5 1€ und 5 2€ Münzen befinden.

Nun ergeben sich durch Kombination mit Wiederholung nach [mm] n!/k_{1}!/ k_{2}! [/mm] 184756 Anordnungsmöglichkeiten.
Aber wie kann man zeigen, dass die obige Behauptung auch gilt?

        
Bezug
Verteilung Münzen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Mo 18.04.2022
Autor: Gonozal_IX

Hiho,

hier bedarf es keiner Kombinatorik.

Seien alle Münzen hintereinander aufgereiht.
Wir betrachten nun die ersten 10 Münzen, sind das 5 von jeder Sorte, sind wir fertig.

Falls nicht, so gibt es eine Sorte öfter als die andere. OBdA seien das die 1€ Münzen, bezeichnen wir deren Anzahl mit k<5.
Dann gibt es aber in den letzten 10 Münzen exakt $10-k > 5$ 1€ Münzen.

Wir verschieben dann unsere 10er Betrachtung eins nach rechts, so dass wir also nun die Münzen 2-11 betrachten.
Nun können zwei Fälle eintreten:

a) die "herausfallende" Münze entspricht der "hinzukommenden" Münze => Es ändert sich nichts an der Anzahl der $k$ 1€ Münzen.

b) die "herausfallende" Münze entspricht nicht der "hinzukommenden" Münze => Die Anzahl an 1€ Münzen ändert sich um -1, wenn die hinzukommende Münze ein 2€ Stück ist oder um +1, wenn es ein 1€ Stück ist.

D.h. insbesondere: Da sich die Anzahl der 1€ Münzen immer nur um [mm] $\pm [/mm] 1$ ändert und wenn ich zwei Werte dafür im Laufe der Zeit habe, muss jeder Wert dazwischen ebenfalls einmal angenommen werden.

Heißt: Da wir ohne eine Verschiebung k<5 1€ Münzen haben und nach 10 Verschiebungen 10-k > 5 1€ Münzen haben aber jeder Wert dazwischen nach obigen angenommen werden muss, gibt es eine Verschiebung bei der k=5 1€ Münzen (und damit auch k=5 2€ Münzen) in unserem 10er Block enthalten sind.

Gruß,
Gono

Bezug
                
Bezug
Verteilung Münzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 Mo 18.04.2022
Autor: Spica

Danke, gute Erklärung.
VG Spica

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]