www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungsannahmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Verteilungsannahmen
Verteilungsannahmen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsannahmen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 14.09.2005
Autor: BAGZZlash

Hallo zusammen!

Nach meiner Frage von gestern habe ich noch ein bißchen weiter recherchiert und gegrübelt und das ganze auf eine einzige Fragestellung heruntergebrochen:

Welcher Verteilung folgt dieser Ausdruck: [mm]\bruch{\chi^{2}}{n}[/mm]?
Bekanntlich gilt ja [mm]\bruch{\bruch{\chi^{2}}{m}}{\bruch{\chi^{2}}{n}}\sim F_n^{m}[/mm]. Wenn also gelten würde, daß [mm]\bruch{\chi^{2}}{n}\sim \chi^{2}[/mm], dann könnte man ja auch direkt schreiben [mm]\bruch{\chi^{2}_m}{\chi^{2}_n}\sim F_n^{m}[/mm]. Das sieht man aber nie. Ist also [mm]\bruch{\chi^{2}}{n}[/mm] normalverteilt?

Ich habe diese Frage noch nie irgendwo anders gestellt als in meinem Kopf.

        
Bezug
Verteilungsannahmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Do 15.09.2005
Autor: Brigitte

Hallo [mm] $\backslash$ [/mm] ! :-)

> Welcher Verteilung folgt dieser Ausdruck:
> [mm]\bruch{\chi^{2}}{n}[/mm]?
> Bekanntlich gilt ja
> [mm]\bruch{\bruch{\chi^{2}}{m}}{\bruch{\chi^{2}}{n}}\sim F_n^{m}[/mm].
> Wenn also gelten würde, daß [mm]\bruch{\chi^{2}}{n}\sim \chi^{2}[/mm],
> dann könnte man ja auch direkt schreiben
> [mm]\bruch{\chi^{2}_m}{\chi^{2}_n}\sim F_n^{m}[/mm]. Das sieht man
> aber nie. Ist also [mm]\bruch{\chi^{2}}{n}[/mm] normalverteilt?

Das "also" verwirrt mich etwas. Es gibt ja auch Verteilungen, die nicht gerade einer [mm] $\chi^2$-, [/mm] F- oder Normalverteilung entsprechen. Einige Verteilungen haben einfach keinen Namen.

Zu Deiner Vermutung: Angenommen es gilt [mm] $X\sim\chi^2_m$. [/mm] Dann folgt ja bekanntlich $E(X)=m$ und $Var(X)=2m$. Würde nun [mm] $\frac{X}{n}\sim\chi^2_k$ [/mm] gelten (mit einem noch zu bestimmenden Freiheitsgrad $k$), müsste gelten:

$E(X/n)=k$ und $Var(X/n)=2k$, also

$m/n=k$ und [mm] $2m/n^2=2k$, [/mm] was zu einem Widerspruch führt, da $k,m>0$.

Die Verteilung von [mm] $\frac{X}{n}$ [/mm] hat vermutlich keinen Namen, eventuell skalierte [mm] $\chi^2$-Verteilung [/mm] (nichtzentral gibt es auf jeden Fall, aber skaliert habe ich noch nicht gehört), und man begnügt sich damit, dass man weiß, wie $X$ verteilt ist. Damit kann man ja schnellstens alles Wichtige bestimmen. Normalverteilt ist diese Zufallsvariable bestimmt nicht.

> Ich habe diese Frage noch nie irgendwo anders gestellt als
> in meinem Kopf.

[lol]

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]