Verteilungsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hallo
Bräuchte wieder eure Hilfe ob ich das richtig verstehe
Gegeben ist eine Wahrscheinlichkeitsdichtefunktion siehe Anhang.
Daraus lese ich mir Abschnitte heraus
[mm]-\infty\leq t \leq 4ms[/mm] 0
[mm]4ms\leq t \leq8ms[/mm] [mm]\bruch{1}{t}[/mm]
[mm]8ms\leq t \leq 10,4548[/mm] 0,125
[mm]F_{X}(\xi)=\int_{-\infty}^{\xi} p_{X}(\xi)d\xi=\integral_{}^{}{\bruch{1}{t}+0,125} dt=ln(t)+0,125*t[/mm]
Jetzt muss aber für eine Verteilungsfunktion gelten
[mm]0\leq F_{X}(\xi) <1[/mm]
[mm]F_{X}(-\infty)=0[/mm]
[mm]F_{X}(+\infty)=1[/mm]
[mm]\xi_{a} < \xi_{b} \Rightarrow F_{X}(\xi_{a})
Was für meine Verteilungsfunktion aber überhaupt nicht zutrifft
Ist jetzt mein Rechenweg falsch oder sind die Eigenschaften der Verteilungsfunktion nicht erfüllt??
Dateianhänge: Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:54 Fr 29.10.2010 | Autor: | Walde |
Hi Stevarino,
zunächst mal: das angehängte Bild der Dichtefkt. ist ganz schön irreführend. Da bei t=4 ja f(t)=0,25 sein sollte,der Fktwert bei deinem Bild aber ca. 0,19 ist. Und es eher nach f(3)=0,25 aussieht. Die Abschnitte, die du angegeben hast, scheinen zu stimmen, aber aus dem Bild kann man die eigentlich nicht herauslesen...
Ok, jetzt aber zur Lösung:
da deine Dichtefkt abschnittsweise definiert ist, mit
[mm] f(t)=\begin{cases} 0, & \mbox{für } t<4 \\ 1/t, & \mbox{für } 4\le t\le 8 ,\\ 0,125 & \mbox{für } 8
muss deine Verteilungsfunktion auch abschnittsweise definiert sein.
[mm] F_X(x)=\begin{cases} 0, & \mbox{für } x<4 \\ \integral_{4}^{x}{\bruch{1}{t}dt}= ln(x)-ln(4), & \mbox{für } 4\le x\le 8 ,\\ \integral_{4}^{8}{\bruch{1}{t}dt+\integral_{8}^{x}0,125 dt}= ln(2)+0,125*(x-8) & \mbox{für } 8
Das ln(2) kommt von [mm] ln(8)-ln(4)=ln\bruch{8}{4}. [/mm]
Und da [mm] ln(2)+0,125*(10,4548-8)\approx [/mm] 1 (nur ungefähr weil 10,4548 gerundet ist) ,ist auch [mm] F_X(x)=1 [/mm] für [mm] x\to\infty
[/mm]
Alles klar?
LG Walde
|
|
|
|
|
Hallo Walde
Danke erst mal für deine Antwort nur das ich das jetzt richtig verstehe
Mein erstes Integral würde lauten[mm]\integral_{-\infty}^{x}{0 dt}[/mm]
das zweite dann[mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{x}{\bruch{1}{t} dt}[/mm]
das drittel [mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{8}{\bruch{1}{t} dt}+\integral_{8}^{x}{0,125 dt}[/mm]
das vierte [mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{8}{\bruch{1}{t} dt}+\integral_{8}^{10,4548}{0,125 dt}+\integral_{10,4548}^{x}{0dt}[/mm]
Hab ich das Schema so richtig verstanden??
lg Stevo
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:58 Sa 30.10.2010 | Autor: | Disap |
Hallo.
> Danke erst mal für deine Antwort nur das ich das jetzt
> richtig verstehe
>
> Mein erstes Integral würde lauten[mm]\integral_{-\infty}^{x}{0 dt}[/mm]
>
> das zweite dann[mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{x}{\bruch{1}{t} dt}[/mm]
>
> das drittel [mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{8}{\bruch{1}{t} dt}+\integral_{8}^{x}{0,125 dt}[/mm]
>
> das vierte [mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{8}{\bruch{1}{t} dt}+\integral_{8}^{10,4548}{0,125 dt}+\integral_{10,4548}^{x}{0dt}[/mm]
>
> Hab ich das Schema so richtig verstanden??
Das hast du richtig verstanden.
|
|
|
|