www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungsfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Verteilungsfunktionen
Verteilungsfunktionen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktionen: verteilung, Fragen
Status: (Frage) beantwortet Status 
Datum: 19:40 Do 20.05.2010
Autor: schnecke-90

Aufgabe
Welche der folgenden Funktionen sind eine Verteilungsfunktion?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Hallo,
Meine Aufgabenideen  zu den Aufgaben im Link
http://www.fotos-hochladen.net/big/t25ay6ns57j.jpg


a. [mm] \limes_{x\rightarrow\ (-)infty} [/mm] für [mm] x\to [/mm]  0 für F(x)
b [mm] .\limes_{x\rightarrow\infty} [/mm] für [mm] x\to [/mm]  1 für F(x)
c. [mm] 0\le [/mm] F(x) [mm] \le1 [/mm]
d. [mm] x1\le [/mm] x2
e. F(x+)=F(x), wobei ich mit dem Ausdruck nichts anfangen kann.
f. [mm] F(x1)\le [/mm] F(x2)

Bei den ersten 3 funktionen meine ich, dass die ersten 4 Sachen stimmen, wenn ich es richtig verstanden habe, zur 5 und habe ich keine Idee und bei 6 würde ich auch sagen, sie stimmen.

Bei der letzten Funktion habe kann ich zwar sagen, dass die ersten 3 Sachen passen, aber danach weiß ich es nicht.

ich würde mich also über eure Hilfe freuen und vielleicht gibt es ja auch noch mehr sachen, woran ich das festmachen kann. Danke euch


das ist aber hier, so wie das sehe bei allen Fkt gegeben
auch ist gegeben, dass aber einem bestimmten Funktionswert die Funktion 1 annimmt, weil x dann so klein wird, das es keine Auswirkung mehr hat, aber trotzdem muss es ja noch weitere Sachen geben, oder? Würde mich freune, wenn mir jemand hilft.
Danke


        
Bezug
Verteilungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Sa 22.05.2010
Autor: steppenhahn

Hallo!

Schau dir []hier an, welche drei Eigenschaften eine Verteilungsfunktion besitzen muss! (Mehr Eigenschaften braucht sie nicht zu haben!)

Der Ausdruck F(x+) = F(x) sollte gerade andeuten, dass F rechtsseitig stetig ist.
Beispielsweise ist die Indikatorfunktion [mm] 1_{[0,1)} [/mm] rechtsseitig stetig in 1, aber nicht linksseitig stetig in 1.

Die Eigenschaft, dass [mm] $\lim_{x\to\infty}F(x) [/mm] = 1$ und [mm] $\lim_{x\to -\infty}F(x) [/mm] = 0$ scheint bei all deinen Beispielen erfüllt zu sein.

Du musst also noch überprüfen, ob die Funktionen monoton wachsend sind und rechtsseitig stetig.

Nach kurzem Drüberschauen hier meine Ideen:
(a) scheint okay zu sein (also eine Verteilungsfunktion)
(b) Rechtsseitige Stetigkeit anschauen!
(c) Monotonie anschauen!
(d) scheint okay zu sein

Du musst aber alles nachrechnen!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]