www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieVier-Farben-Satz Eul.Polyeder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Vier-Farben-Satz Eul.Polyeder
Vier-Farben-Satz Eul.Polyeder < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vier-Farben-Satz Eul.Polyeder: Idee
Status: (Frage) für Interessierte Status 
Datum: 17:42 Di 21.01.2014
Autor: Ballo

Aufgabe
1) Für Triangulationen gilt: alle haben 3 Kanten (k) und jede Kante begrenzt 2 Regionen (r) also:
1.1) 3r = 2k

2) Px = Anzahl der Ecken (e) von der Triangulation T mit Eckengrad x, also:
2.2) [mm] \summe_{i=1}^{n} [/mm] * Px = e   (i = x)&(n = [mm] \infty [/mm] )

3) Da jede Kante (k) am Ende jeweils eine Ecke (e) hat gilt:
3.1) [mm] \summe_{i=1}^{n} [/mm] * Px * x = 2k   (i=x)& (n= [mm] \infty [/mm] )

4) Man setzt Gleichung 1.1) in 3.1) ein und erhält:
4.1) [mm] \summe_{i=1}^{n} [/mm] (6 - x) * Px = 12   (i=x)&(n= [mm] \infty [/mm] )

5) Durch Umschreiben von Gleichung 4.1) erhält man:
2Px2 + 3Px3 + 1Px4 + 1Px5 - 1Px6... -[(6 - x) * Px = 12

Fazit: Mann kann sehen, dass der Graph mindestens eine Ecke mit einem Eckengrad von höchstens 5 besitzt.

Hallo,
als aller erstes nochmal ein dickes Dankeschön, für die schnellen Antworten bisher.

Die Quelle für diese Gleichung ist diese hier:
http://www.ti.inf.uni-due.de/fileadmin/public/teaching/seminar/graphs/ss2013/blockseminar/Der_Vier-Farben-Satz.pdf

Zu meinen Fragen:

Ich habe Versucht die einzelnen Schritte nachzuvollziehen.
Die Gleichung wird mittels der Eulerschen Polyederformel( e - k + r = 2 ) ( e = Ecken ; k = Kanten ; r = Regionen ) eine Triangulation T  gelößt.

1. Frage:
Schritt 1)- 3) ist mir klar allerdings komm ich nicht auf das Ergebnis von Schritt 4) Ich weiß, dass die Gleichung umgeformt wurde.
Nun sind mir allerdings die Zwischenschritte nicht klar.
Also wie kommt man auf:
[mm] \summe_{i=1}^{n} [/mm] (6 - x) * Px = 12 ?

2. Frage:
In der genannten Quellenangabe steht nach der Gleichung:
Aus der Gleichung aus 6 erkennt man, dass die Gleichung nur erfüllt wird, sofern mindestens ein positiver Summand existiert. Infrage kommen also Ecken mit dem Grad 2, 3, 4 und 5.  Somit stimmt der Satz, dass ein Graph mindestens eine Ecke von höchstens fünf Grad besitzt.

Wieso wird die Gleichung nur erfüllt, sofern mind. 1 positiver Summand existiert?

Wieso kommen die Ecken mit Grad 2,3,4 und 5 infrage ?

Und zum Schluss:
Wie kommt man darauf, dass der Satz dann stimmt ? In der Gleichung steht ja nichts davon, dass mindestens eine Ecke von höchstem Grad 5 existiert?

Und ich dachte, dass mir diese Formel eine Art "kleinen Ansatz" für die Lösung des Vier-Farben-Satzes gibt. Allerdings bringt mir diese Gleichung ja nichts, bzw steht nur mit dem Fünf-Farben-Satz in Verbindung.

Dass diese Gleichung für den Vier-Farben-Satz benötigt wird weiß ich auch, allerdings verstehe ich die Beziehung zwischen dieser Gleichung und dem Vier-Farben-Satz nicht.

Vielen Dank schon mal im Voraus !

MfG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vier-Farben-Satz Eul.Polyeder: Doppelposting
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Di 21.01.2014
Autor: Diophant

Hallo,

dies ist ein Doppelposting. Bitte poste jede Frage nur einmal und lies dazu und zum Upload von Dateien unsere Forenregeln durch.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]