Volatilitätsberechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 15:14 So 20.03.2005 | Autor: | Bulli2010 |
Hallo,
ich habe (leider) wiedermal ein Problem mit einer Berechnung aus einem Buch. (Erfolgreiches Depotmanagement von F.-J. Leven und Christoph Schlienkamp).
Verkürzt gibt das Buch folgende Daten wieder, die ich bis auf die Volatilität auch nachvollziehen kann:
Depot 1 Depot 2 Depot 3
Gesamtrendite 22,43 14,31 16,71
Erwartungswert 1,96 1,24 1,42
Varianz 21,78 4,07 1,89
Standardabweichung 4,67 2,02 1,37
Volatilität 13,67 5,91 4,02
Wenn ich jedoch die Volatilität wie folgt berechne
Monatsrendite: [mm] \sigma_{ann} [/mm] = [mm] Standardabweichung*\wurzel{12*(250:365)}
[/mm]
komme ich auf folgende Ergebnisse.
Volatilität 13,38 5,79 3,94
Habt Ihr eine Idee, wo der Denk/Rechenfehler liegen könnte?
Danke im voraus und viele Grüße
Thomas
p.s. gibt es eine Möglichkeit Tabellen in Zeilen und Spalten einzugeben? Ich habe ziemlich rumgebastelt bis diese Tabelle in der Vorschau ordentlich aussah.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:51 Di 29.03.2005 | Autor: | Julius |
Hallo!
Die Werte sind also aus Monatsrenditen berechnet und du willst die jährliche (historische) Volatilität bestimmen.
Die Anpassung mit den 250 Handelstagen ist zwar üblich, aber ja doch recht willkürlich. Kann es sein, dass die Verfasser die genaue Anzahl der gehandelten Tage in diesem untersuchten Jahr zu Grunde gelegt haben? Wenn du nämlich den Wert 250 etwas erhöhst (tue das doch mal), dass kommst du mit allen drei Werten gleichzeitig in die Nähe der angegebenen Zahlen.
Eine andere Erklärung habe ich auch nicht...
Viele Grüße
Julius
|
|
|
|