www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollst. Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Vollst. Induktion
Vollst. Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Mo 12.12.2005
Autor: wenbockts

Kann mir jemnd bei dieser Aufgabe mit einem Ansatz weiter helfen? LG

Sei f :  [mm] \IR \to \IR [/mm] beliebig oft differenzierbar und [mm] g(x)=f(e^x). [/mm] Zeigen
Sie mit Hilfe der vollständigen Induktion, dass gilt
[mm] g^{(n)}(x)=\summe_{k=1}^{n} a_{n,k} f^{(k)}(e^x)*e^{kx} [/mm]
Drücken Sie die Koeffizienten [mm] a_{n+1,1}, a_{n+1,2}, [/mm] . . . , [mm] a_{n+1,k+1} [/mm] durch die Koeffizienten
[mm] a_{n,1} [/mm] , . . ., [mm] a_{n,k} [/mm] aus.

        
Bezug
Vollst. Induktion: Problem? ... Hinweis
Status: (Antwort) fertig Status 
Datum: 08:36 Di 13.12.2005
Autor: Loddar

Hallo wenbockts!


Wo genau liegen denn Deine Probleme?

Das ist doch (fast ;-) ) eine vollständige Induktion wie jede andere.


Für die Ableitung von $g(x)_$ bzw. $f(x)_$ gilt gemäß MBKettenregel:

$g'(x) \ = \ [mm] \left[ \ f(e^x) \ \right]' [/mm] \ = \ [mm] f'(e^x)*e^x$ [/mm]


Für die weiteren Ableitungen (also beim Induktionsschritt) kommt nun noch die MBProduktregel dazu.


Gruß
Loddar


Bezug
                
Bezug
Vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 So 18.12.2005
Autor: wenbockts

Aufgabe
Siehe oben..

Ich versteh halt immer noch net so genau was ich da eigentlich beweisen soll.. diese Summenschreibweise bringt mich immer ganz durcheinander...

Bezug
                        
Bezug
Vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 So 18.12.2005
Autor: leduart

Hallo wen
Erst mal für [mm] g'=g^{(1)} [/mm] zeigen dass die Formel gilt.
als nächstes annehmen, dass sie für n gilt, dann diese Formel ableiten, und zeigen, dass sie die Formel für n+1 ergibt.  dabei werden die [mm] a_{n,k} [/mm] mit Faktoren versehen und heissen dann [mm] a_{n+1,k}. [/mm]
Wenn du mit dem Summenzeichen nicht umgehen kannst schreibs erst mal mit Pünktchen, das ist eigentlich das gleiche, aber am Anfang für viele einfacher.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]