www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Indukt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Vollständige Indukt.
Vollständige Indukt. < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Indukt.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:32 So 20.02.2011
Autor: Spencer

Aufgabe
Die Aufgabe lautet

[mm] \summe_{k=1}^{n} (-1)^{k+1}*k^2 [/mm] = [mm] (-1)^{n+1}*\bruch{n(n+1)}{2} [/mm]





Hallo Leute,

die obige Aufgabe soll mittels voll. Induktion gelöst werden ....

den Induktionsanfang und Induktionsvorraussetzung ist kein Problem ... bei dem Induktionsschluss ist eine Stelle an der ich die Umformung nicht verstehe ....

[mm] \summe_{k=1}^{n+1} (-1)^{k+1}*k^2 [/mm] = ( [mm] \summe_{k=1}^{n} (-1)^{k+1}*k^2) [/mm] + [mm] (-1)^{n+1}*(n+1)^2 [/mm] =  
[mm] (-1)^{n+1}*\bruch{(n(n+1)}{2}+(-1)^{n+2}*(n [/mm] + [mm] 1)^2 [/mm] = jetzt diese Umformung

[mm] (-1)^{n+1}\bruch{(n+1)}{2}*(n [/mm] - 2 (n + 1)) =

= [mm] (-1)^{n+1}\bruch{(n+1)}{2}*(-n [/mm] - 2) = [mm] (-1)^{n+2}\bruch{(n+1)(n+2)}{2} [/mm]

könnte mir jemand diesen Teil erklären...!


danke für die Hilfe!

gruß
Spencer




        
Bezug
Vollständige Indukt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 So 20.02.2011
Autor: felixf

Moin!

Lies dir doch mal durch was du da geschrieben hast:

> [mm]\summe_{k=1}^{n+1} (-1)^{k+1}*k^2[/mm] = ( [mm]\summe_{k=1}^{n} (-1)^{k+1}*k^2)[/mm]
> + [mm](-1)^n+1 (n+1)^1[/mm] =  [mm](-1)^n+1*\bruch{n(n+1)}{2}[/mm] +
> [mm](-1)^n+2*(n[/mm] + [mm]1)^2[/mm] = jetzt diese Umformung
>
> [mm](-1)^{n+1}\bruch{(n+1)}{2}*(n[/mm] - 2 (n + 1)) =
>  
> = [mm](-1)^{n+1}\bruch{(n+1)}{2}*(-n[/mm] - 2) =
> [mm](-1)^{n+2}\bruch{(n+1)(n+2)}{2}[/mm]

Macht das noch irgendeinen Sinn?

Denk doch bitte an die geschweiften Klammern, wenn du [mm] $(-1)^{n+1}$ [/mm] schreiben willst, und schreib nicht einfach [mm] $(-1)^n+1$. [/mm] Das bedeutet etwas voellig anderes!

LG Felix


Bezug
                
Bezug
Vollständige Indukt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 So 20.02.2011
Autor: Spencer

hehe ja bin gerade noch am ausbessern von fehlern ;-) sorry

Bezug
                
Bezug
Vollständige Indukt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 So 20.02.2011
Autor: Spencer

so jetzt sollte es im großen und ganzen stimmen...! hoffe ich!

gruß
Spencer

Bezug
        
Bezug
Vollständige Indukt.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 So 20.02.2011
Autor: kamaleonti

Hallo,

schau mal hier. Da gab es vor kurzem fast genau die gleiche Aufgabe. Du musst nur mit dem unterschiedlichen Exponenten von (-1) aufpassen.

Gruß

Bezug
                
Bezug
Vollständige Indukt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 So 20.02.2011
Autor: Spencer

Danke für den Link is ja fast wirklich die selbe Aufgabe.... falls ich noch rückfragen hab melde ich mich! Danke


gruß
Spencer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]