www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Hänge gerade fest
Status: (Frage) beantwortet Status 
Datum: 13:16 Sa 06.09.2014
Autor: sick_of_math

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Verwenden Sie das Prinzip der vollständigen Induktion, um zu zeigen, dass für alle $n\in\mathbb{N}$ gilt:

$\sum_{k=1}^{n}\frac{1}{k(k+1)}=\frac{n}{n+1}$

Hallo,

also Induktionsanfang für $n=1$ ist mir klar, das haut auch hin.

Dann Induktionsannahme, also dass die Aussage für $n$ gezeigt sei, dann Induktionsschritt $n\mapsto n+1$:

$\sum_{k=1}^{n+1}\frac{1}{k(k+1)}=\sum_{k=1}^{n}\frac{1}{k(k+1)}+\frac{1}{(n+1)(n+2)}=\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n(n+2)+1}{(n+1)(n+2)$


Eigentlich ganz blöd, aber ich sehe nun nicht, dass

$\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{n+1}{n+2}$.

Kann mir mal eben bitte jemand auf die Sprünge helfen?

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Sa 06.09.2014
Autor: MaslanyFanclub

Hallo,

> Verwenden Sie das Prinzip der vollständigen Induktion, um
> zu zeigen, dass für alle [mm]n\in\mathbb{N}[/mm] gilt:
>  
> [mm]\sum_{k=1}^{n}\frac{1}{k(k+1)}=\frac{n}{n+1}[/mm]

Nur als Info am Rande:
Induktion ist hier unnötig. Partialbruchzerlegung und Teleskopsumme ist imo hier viel schöner.

>  Hallo,
>  
> also Induktionsanfang für [mm]n=1[/mm] ist mir klar, das haut auch
> hin.
>  
> Dann Induktionsannahme, also dass die Aussage für [mm]n[/mm]
> gezeigt sei, dann Induktionsschritt [mm]n\mapsto n+1[/mm]:
>  
> [mm]\sum_{k=1}^{n+1}\frac{1}{k(k+1)}=\sum_{k=1}^{n}\frac{1}{k(k+1)}+\frac{1}{(n+1)(n+2)}=\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n(n+2)+1}{(n+1)(n+2)[/mm]
>  
>
> Eigentlich ganz blöd, aber ich sehe nun nicht, dass
>  
> [mm]\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{n+1}{n+2}[/mm].
>  
> Kann mir mal eben bitte jemand auf die Sprünge helfen?

Erweitere auf den Hauptnenner.


Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Sa 06.09.2014
Autor: sick_of_math


> Hallo,
>  
> > Verwenden Sie das Prinzip der vollständigen Induktion, um
> > zu zeigen, dass für alle [mm]n\in\mathbb{N}[/mm] gilt:
>  >  
> > [mm]\sum_{k=1}^{n}\frac{1}{k(k+1)}=\frac{n}{n+1}[/mm]
>  Nur als Info am Rande:
>  Induktion ist hier unnötig. Partialbruchzerlegung und
> Teleskopsumme ist imo hier viel schöner.

Ja, kann sein, aber die Aufgabe soll explizit via vollst. Ind. gelöst werden.

>  
> >  Hallo,

>  >  
> > also Induktionsanfang für [mm]n=1[/mm] ist mir klar, das haut auch
> > hin.
>  >  
> > Dann Induktionsannahme, also dass die Aussage für [mm]n[/mm]
> > gezeigt sei, dann Induktionsschritt [mm]n\mapsto n+1[/mm]:
>  >  
> >
> [mm]\sum_{k=1}^{n+1}\frac{1}{k(k+1)}=\sum_{k=1}^{n}\frac{1}{k(k+1)}+\frac{1}{(n+1)(n+2)}=\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n(n+2)+1}{(n+1)(n+2)[/mm]
>  >  
> >
> > Eigentlich ganz blöd, aber ich sehe nun nicht, dass
>  >  
> >
> [mm]\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{n+1}{n+2}[/mm].
>  >  
> > Kann mir mal eben bitte jemand auf die Sprünge helfen?
> Erweitere auf den Hauptnenner.
>  

Weiß nicht, wie du das meinst, der Hauptnenner ist doch $(n+1)(n+2)$.

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Sa 06.09.2014
Autor: MaslanyFanclub


> > Hallo,
>  >  
> > > Verwenden Sie das Prinzip der vollständigen Induktion, um
> > > zu zeigen, dass für alle [mm]n\in\mathbb{N}[/mm] gilt:
>  >  >  
> > > [mm]\sum_{k=1}^{n}\frac{1}{k(k+1)}=\frac{n}{n+1}[/mm]
>  >  Nur als Info am Rande:
>  >  Induktion ist hier unnötig. Partialbruchzerlegung und
> > Teleskopsumme ist imo hier viel schöner.
>  
> Ja, kann sein, aber die Aufgabe soll explizit via vollst.
> Ind. gelöst werden.

Deswegen ja als Info am Rande.

>  >  
> > >  Hallo,

>  >  >  
> > > also Induktionsanfang für [mm]n=1[/mm] ist mir klar, das haut auch
> > > hin.
>  >  >  
> > > Dann Induktionsannahme, also dass die Aussage für [mm]n[/mm]
> > > gezeigt sei, dann Induktionsschritt [mm]n\mapsto n+1[/mm]:
>  >  >

>  
> > >
> >
> [mm]\sum_{k=1}^{n+1}\frac{1}{k(k+1)}=\sum_{k=1}^{n}\frac{1}{k(k+1)}+\frac{1}{(n+1)(n+2)}=\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n(n+2)+1}{(n+1)(n+2)[/mm]
>  >  >  
> > >
> > > Eigentlich ganz blöd, aber ich sehe nun nicht, dass
>  >  >  
> > >
> >
> [mm]\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{n+1}{n+2}[/mm].
>  >  >  
> > > Kann mir mal eben bitte jemand auf die Sprünge helfen?
> > Erweitere auf den Hauptnenner.
>  >  
>
> Weiß nicht, wie du das meinst, der Hauptnenner ist doch
> [mm](n+1)(n+2)[/mm].

Richtig.
Und beim Addieren zweier Brüche man verschiedenen Nennern ist es bei der Addition sinnvoll diese aus der Mittelstufe bekannte Technik:
https://de.wikipedia.org/wiki/Hauptnenner
zu verwenden.


Bezug
                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Sa 06.09.2014
Autor: sick_of_math

Das weiß ich ja. Aber die LETZTE Identität sehe ich nicht, die erste sehe ich.

Bezug
                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Sa 06.09.2014
Autor: MaslanyFanclub


> Das weiß ich ja. Aber die LETZTE Identität sehe ich
> nicht, die erste sehe ich.

Dann schreib das doch bitte auch und nicht die GANZE Gleichungskette.

Ausmultiplizieren und binomische Formel


Bezug
        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Sa 06.09.2014
Autor: sick_of_math

Danke, das war ja einfach, aber ich bin nicht drauf gekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]