www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Mi 21.01.2009
Autor: Lisa-19

Aufgabe
Für n [mm] \in [/mm] IN mit [mm] n\ge [/mm] 4 ist n! > [mm] 2^n [/mm]

I-Anfang: Für n=4 gilt:
4! > [mm] 2^4 [/mm]
24 > 16  wahre Aussage

I-Schritt:
I-Voraussetzung: Für ein beliebiges n [mm] \in [/mm] IN mit n [mm] \ge [/mm] 4 gilt:
n! > [mm] 2^n [/mm]

I-Behauptung: Für den Nachfolger n+1 gilt:
(n+1)! > 2^(n+1)

I-Beweis:
Ich habe leider überhaupt keine Ahnung, was ich an (n+1)! verändern kann.
ich würde die I-Behauptung dann so betrachten: 2^(n+1)< n!
und dann beim Beweis:
2^(n+1)= [mm] 2^n [/mm] * 2 < n! *2
Jetzt weiß ich nicht wie ich weiter machen soll. Kann mir jemand helfen?

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Mi 21.01.2009
Autor: MathePower

Hallo Lisa-19,

> Für n [mm]\in[/mm] IN mit [mm]n\ge[/mm] 4 ist n! > [mm]2^n[/mm]
>  I-Anfang: Für n=4 gilt:
>  4! > [mm]2^4[/mm]

>  24 > 16  wahre Aussage

>  
> I-Schritt:
>  I-Voraussetzung: Für ein beliebiges n [mm]\in[/mm] IN mit n [mm]\ge[/mm] 4
> gilt:
>  n! > [mm]2^n[/mm]

>  
> I-Behauptung: Für den Nachfolger n+1 gilt:
>  (n+1)! > 2^(n+1)

>  
> I-Beweis:
>  Ich habe leider überhaupt keine Ahnung, was ich an (n+1)!
> verändern kann.
>  ich würde die I-Behauptung dann so betrachten: 2^(n+1)<
> n!
>  und dann beim Beweis:
>  2^(n+1)= [mm]2^n[/mm] * 2 < n! *2

Jetzt mußt Du nur noch zeigen, für welche n gilt:

[mm]2n! < \left(n+1\right)![/mm]


>  Jetzt weiß ich nicht wie ich weiter machen soll. Kann mir
> jemand helfen?


Gruß
MathePower

Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Mi 21.01.2009
Autor: smarty

Hallo MathePower,

> Hallo Lisa-19,
>  
> > Für n [mm]\in[/mm] IN mit [mm]n\ge[/mm] 4 ist n! > [mm]2^n[/mm]
>  >  I-Anfang: Für n=4 gilt:
>  >  4! > [mm]2^4[/mm]

>  >  24 > 16  wahre Aussage

>  >  
> > I-Schritt:
>  >  I-Voraussetzung: Für ein beliebiges n [mm]\in[/mm] IN mit n [mm]\ge[/mm]
> 4
> > gilt:
>  >  n! > [mm]2^n[/mm]

>  >  
> > I-Behauptung: Für den Nachfolger n+1 gilt:
>  >  (n+1)! > 2^(n+1)

>  >  
> > I-Beweis:
>  >  Ich habe leider überhaupt keine Ahnung, was ich an
> (n+1)!
> > verändern kann.
>  >  ich würde die I-Behauptung dann so betrachten: 2^(n+1)<
> > n!
>  >  und dann beim Beweis:
>  >  2^(n+1)= [mm]2^n[/mm] * 2 < n! *2
>  
> Jetzt mußt Du nur noch zeigen, für welche n gilt:
>  
> [mm]2n! < \left(n+1\right)![/mm]

das wurde doch schon im Induktionsanfang gezeigt. Ich finde sie sollte lieber da weiter machen, wo sie aufgehört hat.

2n!<....<....<....<(n+1)n!=(n+1)!


Viele Grüße
Smarty

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Mi 21.01.2009
Autor: Lisa-19

ich hab noch was rausgefunden:
(n+1)! = (n+1)*n*(n-1)*(n-2)*...*(2*1)=(n+1)*n! > [mm] (n+1)*2^n [/mm] wegen [mm] n\ge4 [/mm] ist [mm] (n+1)*2^n> 2*2^n [/mm]
Ist das richtig?

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Mi 21.01.2009
Autor: smarty

Hallo Lisa,


> ich hab noch was rausgefunden:
>  (n+1)! = (n+1)*n*(n-1)*(n-2)*...*(2*1)=(n+1)*n! >

> [mm](n+1)*2^n[/mm] wegen [mm]n\ge4[/mm] ist [mm](n+1)*2^n> 2*2^n[/mm]
>  Ist das
> richtig?

genau das hatte ich gemeint [ok]


Grüße
Smarty



Bezug
                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Mi 21.01.2009
Autor: Lisa-19

Vielen Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]