www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Was ist hier passiert?
Status: (Frage) beantwortet Status 
Datum: 15:02 Sa 28.03.2009
Autor: TheQ

Aufgabe
Beweisen Sie mit Hilfe der vollständigen Induktion, dass für alle natürlichen Zahlen n gilt:

n>ln(2n)

Diese Aufgabe fällt etwas aus dem Rahmen von anderen Aufgaben zu dem Thema, was mich etwas verwirrt. Ich habe den Lösungsweg dazu, bin aber dennoch verwirrt, was da genau passiert:

I) n=1 Es ist 1 = ln(e)>ln(2)

So weit klar, 1 ist ln(e) und die Aussage trifft zu

II): Sei n> ln(2n)

Allgemeine Behauptung, diese gilt es zu beweisen; auch klar

III) n+1 > ln(2n)+1 = ln(2n) + ln(e) > ln(2n) + ln(2) = ln (2(n+1))

Die erste Unklarheit ist bei

n+1 > ln(2n)+1

Müsste es da nicht konsequenter Weise heissen

n+1 > ln(2n)+1

Offensichtlich nicht, aber warum ist das so?
Danach verstehe ich folgenden Schritt nicht:

ln(2n) +ln(e) > ln(2n) + ln(2)

ln(e) wird anstelle von 1 eingesetzt, das verstehe ich, aber wo kommt plötzlich ln(2) her?

Bisher habe ich eigentlich nur Induktionsaufgaben in der Form von

[mm] \summe_{i=1}^{n} [/mm] 2i = n(n+1) lösen müssen. Bei solchen Aufgaben ist mir das vorgehen klar, nur kann ich das irgendwie nicht auf die genannte Aufgabe übertragen und es fällt mir schwer, herauszufinden welches die Teile von "n" und welche von "n+1" sind.

Mit bestem Dank für die Hilfe.

TheQ

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Sa 28.03.2009
Autor: pelzig


> I) n=1 Es ist 1 = ln(e)>ln(2)  
> So weit klar, 1 ist ln(e) und die Aussage trifft zu

Naja, die Ungleichung am Ende liegt folgt halt aus e>2 (der Logarithmus ist streng monoton wachsend).

> II): Sei n> ln(2n)
> III) n+1 > ln(2n)+1 = ln(2n) + ln(e) > ln(2n) + ln(2) = ln (2(n+1))
>  
> Die erste Unklarheit ist bei
> n+1 > ln(2n)+1

Das ist die Induktionsvoraussetzung.

>  Danach verstehe ich folgenden Schritt nicht:  
> ln(2n) +ln(e) > ln(2n) + ln(2)
> ln(e) wird anstelle von 1 eingesetzt, das verstehe ich,
> aber wo kommt plötzlich ln(2) her?

Das ist dieselbe Abschätzung wie in der Induktionsvoraussetzung. ln(e)>ln(2).

Das eigentliche Problem an dem "Beweis" oben ist die Stelle  ln(2n) + ln(2) = ln (2(n+1)). Das ist nämlich falsch. Richtig muss es heißen: ln(2n) + ln(2) > ln(n+1) + ln(2) = ln (2(n+1)) (und dies gilt wegen der Monotonie des Logarithmus und $2n>n+1$ für $n>1$)

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]