www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Ind., Ungleichung, Fakultät
Status: (Frage) beantwortet Status 
Datum: 14:14 Di 09.02.2010
Autor: raida

Aufgabe
Zeigen Sie, dass für alle n [mm] \in [/mm] N gilt: (2n)! < [mm] (n!)^2 [/mm] *16

Hallo,
bin mir unsicher bei diesem Induktionsbeweis. Kommt mir irgendwie zu einfach vor, denke, dass ich irgendwie falsch gedacht habe, vlt. kann jemand sich das kurz anschauen:

I.A. ist klar

I.Vor.: (2n)! < [mm] (n!)^2 [/mm] *16
I. Beh.: n [mm] \to [/mm] n+1: (2(n+1))! < [mm] (n!)^2 [/mm] *16*(n+1)

  //da ja auf der linken Seite um von Vor. nach Beh. zu kommen mit (n+1) multipliziert wird: folgt aus:  [mm] \bruch{(2n+1)!}{2n!} [/mm] = [mm] \bruch{2!n!(n+1)}{2n!} [/mm] = (n+1)!

I.S.: (2(n+1))! < [mm] (n!)^2 [/mm] *16*(n+1)
        2!n!(n+1) < [mm] (n!)^2 [/mm] *16*(n+1)
        2!n!              < [mm] (n!)^2 [/mm] *16
         2                  < n!*16
  
erfüllt für alle n [mm] \in [/mm] N

Vielen Dank.


        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Di 09.02.2010
Autor: abakus


> Zeigen Sie, dass für alle n [mm]\in[/mm] N gilt: (2n)! < [mm](n!)^2[/mm]
> *16
>  Hallo,
>  bin mir unsicher bei diesem Induktionsbeweis. Kommt mir
> irgendwie zu einfach vor, denke, dass ich irgendwie falsch
> gedacht habe, vlt. kann jemand sich das kurz anschauen:
>  
> I.A. ist klar
>  
> I.Vor.: (2n)! < [mm](n!)^2[/mm] *16
>  I. Beh.: n [mm]\to[/mm] n+1: (2(n+1))! < [mm](n!)^2[/mm] *16*(n+1)
>  
> //da ja auf der linken Seite um von Vor. nach Beh. zu
> kommen mit (n+1) multipliziert wird:

Das stimmt nicht. 2(n+1)=2n+2.
Um von (2n)! auf (2n+2)! zu kommen, muss mit (2n+1) UND mit (2n+2) multiliziert werden.
Gruß Abakus

> folgt aus:  
> [mm]\bruch{(2n+1)!}{2n!}[/mm] = [mm]\bruch{2!n!(n+1)}{2n!}[/mm] = (n+1)!
>  
> I.S.: (2(n+1))! < [mm](n!)^2[/mm] *16*(n+1)
>          2!n!(n+1) < [mm](n!)^2[/mm] *16*(n+1)
>          2!n!              < [mm](n!)^2[/mm] *16
>           2                  < n!*16
>    
> erfüllt für alle n [mm]\in[/mm] N
>  
> Vielen Dank.
>  


Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Di 09.02.2010
Autor: raida

Hallo, danke abakus.

Und wie kommst darauf dass mit (2n+1) UND mit (2n+2) multipliziert werden muss? Wäre dir für eine kurze Ausführung dankbar.

Ist denn (2(n+1))! = 2!(n+1)! nicht erlaubt?

Danke
Grüße

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Di 09.02.2010
Autor: abakus


> Hallo, danke abakus.
>  
> Und wie kommst darauf dass mit (2n+1) UND mit (2n+2)
> multipliziert werden muss? Wäre dir für eine kurze
> Ausführung dankbar.
>  
> Ist denn (2(n+1))! = 2!(n+1)! nicht erlaubt?
>  
> Danke
>  Grüße

[mm] \b{Beispiel: n=4} [/mm]
Dann ist 2n=8 (und [mm] 2(n+1)=\red{10}). [/mm]

n! ist dann 1*2*3*4
(2n)! ist dann 1*2*...*7*8
(2(n+1))! ist dann 1*2*...*7*8 [mm] \red{ * 9*10} [/mm]

2!*n! wäre dann übrigens lediglich (1*2)*(1*2*3*4), was keinesfalls (2n)! entspricht.
Gruß Abakus

Bezug
                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Di 09.02.2010
Autor: raida

okay, danke, ist verständlich.
Aber wie weiß ich dann mit wie viel ich multiplizieren muss um von n nach n+1 zu kommen.

[mm] \bruch{(2n+1)!}{(2n)!} [/mm] ist ja dann nicht mehr auflösbar.

Im vorangehenden Thread hattest du geschrieben, dass mit (2n+1) UND mit (2n+2) multipliziert werden muss. Leider weiß ich nicht wie ich darauf komme.

Vielen Dank.

Grüße


Bezug
                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Di 09.02.2010
Autor: abakus


> okay, danke, ist verständlich.
> Aber wie weiß ich dann mit wie viel ich multiplizieren
> muss um von n nach n+1 zu kommen.
>  
> [mm]\bruch{(2n+1)!}{(2n)!}[/mm] ist ja dann nicht mehr auflösbar.
>  
> Im vorangehenden Thread hattest du geschrieben, dass mit
> (2n+1) UND mit (2n+2) multipliziert werden muss. Leider
> weiß ich nicht wie ich darauf komme.

Induktionsschritt:
Übergang von (2n)! (das ist das lückenlose Produkt aller natürlichen Zahlen von 1 bis 2n)
zu (2(n+1))!, also zu (2n+2)! (das ist das Produkt aller natürlichen Zahlen von 1 bis 2n+2).
Die letzen 5 Faktoren von (2n+2)! lauten [mm] ....\blue{*(2n-2)*(2n-1)*2n}*\red{(2n+1)*(2n+2)}. [/mm]
Blau habe ich die Faktoren gekennzeichnet, die auch schon in (2n)! enthalten sind, rot die neu hinzukommenden.

>  
> Vielen Dank.
>  
> Grüße
>  


Bezug
                                                
Bezug
Vollständige Induktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:23 Di 09.02.2010
Autor: raida

okay, vielen Dank für deine Mühen.
Ist  bei den komplizierteren Induktionsbeweise dann immer so eine individuelle Betrachtung notwendig, oder gibt es da vlt. ein Verfahren oder Tricks, hinter sowas zu kommen?Wie lässt sich der Beweis aber jetzt zu Ende führen, wenn man (2n+2))! nicht umschreiben kann, denn:

(2n+2)!  < [mm] (n!)^2 [/mm] *16 *(2n+1)(2n+2)

Meine Idee wäre jetzt vlt. erst durch (2n+2) und dann durch (2n+1) zu teilen, was bei der Fakultät links ergeben würde

(2n+2-1)! = (2n+1)! und dann durch (2n+1) teilen: = (2n)!

Ich weiß allerdings nicht ob dies überhaupt so  zulässig ist;)

außerdem stehe ich dann wieder vor der Gleichung

(2n)! = [mm] (n!)^2 [/mm] * 16

oujeh...

Danke.

Grüße


Bezug
                                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 09.02.2010
Autor: abakus


> Zeigen Sie, dass für alle n [mm]\in[/mm] N gilt: (2n)! < [mm](n!)^2[/mm]
> *16

Hallo,
die Behauptung ist falsch. da sie nur bis n=3 gilt, danach nicht mehr.
Gruß Abakus

>  Hallo,
>  bin mir unsicher bei diesem Induktionsbeweis. Kommt mir
> irgendwie zu einfach vor, denke, dass ich irgendwie falsch
> gedacht habe, vlt. kann jemand sich das kurz anschauen:
>  
> I.A. ist klar
>  
> I.Vor.: (2n)! < [mm](n!)^2[/mm] *16
>  I. Beh.: n [mm]\to[/mm] n+1: (2(n+1))! < [mm](n!)^2[/mm] *16*(n+1)
>  
> //da ja auf der linken Seite um von Vor. nach Beh. zu
> kommen mit (n+1) multipliziert wird: folgt aus:  
> [mm]\bruch{(2n+1)!}{2n!}[/mm] = [mm]\bruch{2!n!(n+1)}{2n!}[/mm] = (n+1)!
>  
> I.S.: (2(n+1))! < [mm](n!)^2[/mm] *16*(n+1)
>          2!n!(n+1) < [mm](n!)^2[/mm] *16*(n+1)
>          2!n!              < [mm](n!)^2[/mm] *16
>           2                  < n!*16
>    
> erfüllt für alle n [mm]\in[/mm] N
>  
> Vielen Dank.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]