www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Induktionsbeweise" - Vollständige Induktion
Vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Bestätigung
Status: (Frage) beantwortet Status 
Datum: 21:49 Mi 12.09.2012
Autor: AldoRaine

Aufgabe
Man zeige für alle natürlichen Zahlen n [mm] \ge [/mm] 1

[mm] \sum_{k=0}^n \begin{pmatrix} 2n \\ 2k \end{pmatrix} [/mm] = [mm] 2^{2n-1} [/mm]

Guten Tag,
also ich bin die Aufgabe so angegangen, dass ich die Gleichung in der Form des Binomischen Lehrsatzes aufgeschrieben habe.

[mm] {(1+1)}^{2n-1} [/mm] = [mm] \sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix} 1^{2n-1-k}*1^k [/mm] =  [mm] \sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix} [/mm]

Da ja nun gilt: [mm] \sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix} [/mm] = [mm] 2^n [/mm]

habe ich das auf meine Gleichung übertragen und komme auf

[mm] \sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix} [/mm] = [mm] 2^{2n-1} [/mm]

Meine Frage letzten Endes ist, ob der Beweis damit vollständig wäre, oder ob das als Beweis nicht ausreicht.
Bitte um Hilfe! ; )
Liebe Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 12.09.2012
Autor: abakus


> Man zeige für alle natürlichen Zahlen n [mm]\ge[/mm] 1
>  
> [mm]\sum_{k=0}^n \begin{pmatrix} 2n \\ 2k \end{pmatrix}[/mm] =
> [mm]2^{2n-1}[/mm]
>  Guten Tag,
> also ich bin die Aufgabe so angegangen, dass ich die
> Gleichung in der Form des Binomischen Lehrsatzes
> aufgeschrieben habe.
>  
> [mm]{(1+1)}^{2n-1}[/mm] = [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix} 1^{2n-1-k}*1^k[/mm]
> =  [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix}[/mm]
>  
> Da ja nun gilt: [mm]\sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}[/mm]
> = [mm]2^n[/mm]
>  
> habe ich das auf meine Gleichung übertragen und komme auf
>  
> [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix}[/mm] =
> [mm]2^{2n-1}[/mm]
>  
> Meine Frage letzten Endes ist, ob der Beweis damit
> vollständig wäre, oder ob das als Beweis nicht ausreicht.
> Bitte um Hilfe! ; )

Hallo,
sicher kann man das so beweisen, und du hast das auch ganz clever gemacht.
Da du allerdings die Aufgabe selbst unter die Überschrift "Vollständige Induktion" gestellt hast, vermute ich, dass man einen Beweis mit vollständiger Induktion von dir erwartet????
Letztendlich scheint wohl das Hauptziel zu sein, dass ihr dieses Beweisverfahren sicher beherrscht...
Gruß Abakus

>  Liebe Grüße
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 Mi 12.09.2012
Autor: AldoRaine

Ja ich weiß, dass ich Vollständige Induktion als Thema angegeben habe. Das hat den Grund, dass diese Aufgabe aus Otto Forster Analysis ist, im Kapitel §1 Vollständige Induktion. Im Lösungsbuch werden auch einige Aufgaben aus diesem Kapitel weniger durch Vollständige Induktion gelöst.
Das macht mich ja glücklich, dass ich nach langer Zeit Rumprobieren auf so eine banale Lösung gekommen bin. ^^
Danke also ;)

Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:28 Do 13.09.2012
Autor: fred97


>
> > Man zeige für alle natürlichen Zahlen n [mm]\ge[/mm] 1
>  >  
> > [mm]\sum_{k=0}^n \begin{pmatrix} 2n \\ 2k \end{pmatrix}[/mm] =
> > [mm]2^{2n-1}[/mm]
>  >  Guten Tag,
> > also ich bin die Aufgabe so angegangen, dass ich die
> > Gleichung in der Form des Binomischen Lehrsatzes
> > aufgeschrieben habe.
>  >  
> > [mm]{(1+1)}^{2n-1}[/mm] = [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix} 1^{2n-1-k}*1^k[/mm]
> > =  [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix}[/mm]
>  
> >  

> > Da ja nun gilt: [mm]\sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}[/mm]
> > = [mm]2^n[/mm]
>  >  
> > habe ich das auf meine Gleichung übertragen und komme auf
>  >  
> > [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix}[/mm]
> =
> > [mm]2^{2n-1}[/mm]
>  >  
> > Meine Frage letzten Endes ist, ob der Beweis damit
> > vollständig wäre, oder ob das als Beweis nicht ausreicht.
> > Bitte um Hilfe! ; )
>  Hallo,
>  sicher kann man das so beweisen, und du hast das auch ganz
> clever gemacht.

Hallo Abakus,

hab ich Tomaten auf den Augen, aber was soll denn Aldo so clever bewiesen haben ?

In $ [mm] \sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix} [/mm] $ = $ [mm] 2^n [/mm] $

hat er nur das n durch 2n-1 ersetzt. Mehr nicht. Die behauptete Formel hat er damit nicht gezeigt.

FRED

>  Da du allerdings die Aufgabe selbst unter die Überschrift
> "Vollständige Induktion" gestellt hast, vermute ich, dass
> man einen Beweis mit vollständiger Induktion von dir
> erwartet????
>  Letztendlich scheint wohl das Hauptziel zu sein, dass ihr
> dieses Beweisverfahren sicher beherrscht...
>  Gruß Abakus
>  >  Liebe Grüße
>  >  
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>  


Bezug
                        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 Do 13.09.2012
Autor: abakus


> >
> > > Man zeige für alle natürlichen Zahlen n [mm]\ge[/mm] 1
>  >  >  
> > > [mm]\sum_{k=0}^n \begin{pmatrix} 2n \\ 2k \end{pmatrix}[/mm]
> =
> > > [mm]2^{2n-1}[/mm]
>  >  >  Guten Tag,
> > > also ich bin die Aufgabe so angegangen, dass ich die
> > > Gleichung in der Form des Binomischen Lehrsatzes
> > > aufgeschrieben habe.
>  >  >  
> > > [mm]{(1+1)}^{2n-1}[/mm] = [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix} 1^{2n-1-k}*1^k[/mm]
> > > =  [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix}[/mm]
>  
> >  

> > >  

> > > Da ja nun gilt: [mm]\sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}[/mm]
> > > = [mm]2^n[/mm]
>  >  >  
> > > habe ich das auf meine Gleichung übertragen und komme auf
>  >  >  
> > > [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix}[/mm]
> > =
> > > [mm]2^{2n-1}[/mm]
>  >  >  
> > > Meine Frage letzten Endes ist, ob der Beweis damit
> > > vollständig wäre, oder ob das als Beweis nicht ausreicht.
> > > Bitte um Hilfe! ; )
>  >  Hallo,
>  >  sicher kann man das so beweisen, und du hast das auch
> ganz
> > clever gemacht.
>  
> Hallo Abakus,
>  
> hab ich Tomaten auf den Augen, aber was soll denn Aldo so
> clever bewiesen haben ?
>  
> In [mm]\sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}[/mm] = [mm]2^n[/mm]

... wobei man diese weithin geläufige Formel als allgemein bekannt voraussetzen kann...

>  
> hat er nur das n durch 2n-1 ersetzt. Mehr nicht. Die
> behauptete Formel hat er damit nicht gezeigt.

Das ist nun die Frage, ob man bei einem Beweis erst die gesamte Mathematik axiomatisch aufbauen muss oder auf wie viele bekannte Sätze man (in einer konkreten "Lernumgebung") zurückgreifen darf.

>  
> FRED
> >  Da du allerdings die Aufgabe selbst unter die Überschrift

> > "Vollständige Induktion" gestellt hast, vermute ich, dass
> > man einen Beweis mit vollständiger Induktion von dir
> > erwartet????
>  >  Letztendlich scheint wohl das Hauptziel zu sein, dass
> ihr
> > dieses Beweisverfahren sicher beherrscht...
>  >  Gruß Abakus
>  >  >  Liebe Grüße
>  >  >  
> > > Ich habe diese Frage in keinem Forum auf anderen
> > > Internetseiten gestellt.
> >  

>  


Bezug
                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 Do 13.09.2012
Autor: fred97


>
> > >
> > > > Man zeige für alle natürlichen Zahlen n [mm]\ge[/mm] 1
>  >  >  >  
> > > > [mm]\sum_{k=0}^n \begin{pmatrix} 2n \\ 2k \end{pmatrix}[/mm]
> > =
> > > > [mm]2^{2n-1}[/mm]
>  >  >  >  Guten Tag,
> > > > also ich bin die Aufgabe so angegangen, dass ich die
> > > > Gleichung in der Form des Binomischen Lehrsatzes
> > > > aufgeschrieben habe.
>  >  >  >  
> > > > [mm]{(1+1)}^{2n-1}[/mm] = [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix} 1^{2n-1-k}*1^k[/mm]
> > > > =  [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix}[/mm]
>  
> >  

> > >  

> > > >  

> > > > Da ja nun gilt: [mm]\sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}[/mm]
> > > > = [mm]2^n[/mm]
>  >  >  >  
> > > > habe ich das auf meine Gleichung übertragen und komme auf
>  >  >  >  
> > > > [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix}[/mm]
> > > =
> > > > [mm]2^{2n-1}[/mm]
>  >  >  >  
> > > > Meine Frage letzten Endes ist, ob der Beweis damit
> > > > vollständig wäre, oder ob das als Beweis nicht ausreicht.
> > > > Bitte um Hilfe! ; )
>  >  >  Hallo,
>  >  >  sicher kann man das so beweisen, und du hast das
> auch
> > ganz
> > > clever gemacht.
>  >  
> > Hallo Abakus,
>  >  
> > hab ich Tomaten auf den Augen, aber was soll denn Aldo so
> > clever bewiesen haben ?
>  >  
> > In [mm]\sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}[/mm] =
> [mm]2^n[/mm]
>  
> ... wobei man diese weithin geläufige Formel als allgemein
> bekannt voraussetzen kann...
>  >  
> > hat er nur das n durch 2n-1 ersetzt. Mehr nicht. Die
> > behauptete Formel hat er damit nicht gezeigt.
>  
> Das ist nun die Frage, ob man bei einem Beweis erst die
> gesamte Mathematik axiomatisch aufbauen muss oder auf wie
> viele bekannte Sätze man (in einer konkreten
> "Lernumgebung") zurückgreifen darf.

Was soll das ? Gezeigt werden soll:  

$ [mm] \sum_{k=0}^n \begin{pmatrix} 2n \\ 2k \end{pmatrix} [/mm] $ [mm] =$2^{2n-1} [/mm] $.

Hat er das gezeigt ?

Mit dem bin. Satz hat er gezeigt:

$ [mm] \sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix} [/mm] $=$ [mm] 2^{2n-1} [/mm] $

Also bleibt noch zu zeigen:


  [mm] \sum_{k=0}^n \begin{pmatrix} 2n \\ 2k \end{pmatrix}= \sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix} [/mm]

FRED

>  
> >  

> > FRED
> > >  Da du allerdings die Aufgabe selbst unter die Überschrift

> > > "Vollständige Induktion" gestellt hast, vermute ich, dass
> > > man einen Beweis mit vollständiger Induktion von dir
> > > erwartet????
>  >  >  Letztendlich scheint wohl das Hauptziel zu sein,
> dass
> > ihr
> > > dieses Beweisverfahren sicher beherrscht...
>  >  >  Gruß Abakus
>  >  >  >  Liebe Grüße
>  >  >  >  
> > > > Ich habe diese Frage in keinem Forum auf anderen
> > > > Internetseiten gestellt.
> > >  

> >  

>  


Bezug
        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:14 Do 13.09.2012
Autor: fred97


> Man zeige für alle natürlichen Zahlen n [mm]\ge[/mm] 1
>  
> [mm]\sum_{k=0}^n \begin{pmatrix} 2n \\ 2k \end{pmatrix}[/mm] =
> [mm]2^{2n-1}[/mm]
>  Guten Tag,
> also ich bin die Aufgabe so angegangen, dass ich die
> Gleichung in der Form des Binomischen Lehrsatzes
> aufgeschrieben habe.
>  
> [mm]{(1+1)}^{2n-1}[/mm] = [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix} 1^{2n-1-k}*1^k[/mm]
> =  [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix}[/mm]
>  
> Da ja nun gilt: [mm]\sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}[/mm]
> = [mm]2^n[/mm]
>  
> habe ich das auf meine Gleichung übertragen und komme auf
>  
> [mm]\sum_{k=0}^{2n-1} \begin{pmatrix} 2n-1 \\ k \end{pmatrix}[/mm] =
> [mm]2^{2n-1}[/mm]
>  
> Meine Frage letzten Endes ist, ob der Beweis damit
> vollständig wäre, oder ob das als Beweis nicht ausreicht.





??????  

$ [mm] \sum_{k=0}^n \begin{pmatrix} 2n \\ 2k \end{pmatrix} [/mm] $ = $ [mm] 2^{2n-1} [/mm] $

hast Du nicht gezeigt !!!!


Was Du gemacht hast: Du hast in  $ [mm] \sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix} [/mm] $= $ [mm] 2^n [/mm] $

das n durch 2n-1 ersetzt. Sonst nichts !


FRED



> Bitte um Hilfe! ; )
>  Liebe Grüße
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]