www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungVolumen Rotation x-Achse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Volumen Rotation x-Achse
Volumen Rotation x-Achse < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen Rotation x-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Mi 15.04.2009
Autor: n0rdi

Aufgabe
Gegeben sind die Funktionen:
p(x)=2/25(x+3)²+3; [mm] -3\le [/mm] x [mm] \le [/mm] 6 Außenwand
f(x)= [mm] \wurzel{x²+5x+4}; -1\le [/mm] x [mm] \le [/mm] 6 Innenwand
Durch Rotation um die x-Achse entsteht eine Schale
a) Berechnen Sie den maximalen Inndendurchmesser der Schale.
b) Bestimmen Sie, wie viel Flüssigkeit maximal in die Schale passt.
c) Es werden 500 cm³ Flüssigkeit in die Schale gefüllt. Berechnen Sie den Abstand des Flüssigkeitsspiegels vom oberen Rand der Schale.

zu a)
Dann muss ich doch einfach nur den Funktionwert von f(x) bei 6 haben, sprich f(6)=8,367 und diesen dann verdoppeln wegen Durchmesser. Soweit richtig?
zu b)
bei einer Rotation um die x-Achse wird folgende Formel benötigt:
[mm] \pi*\integral_{a}^{b}{f(x)² dx} [/mm]

Hier müsste es dann doch heißen:
[mm] \pi*\integral_{-1}^{6}{f(x)² dx} [/mm]

Da würde dann ungefähr 590cm³ herauskommen.
Ist das denn richtig? oder muss ich die Außenwand noch irgendwie mit einbringen, dass z.b. auch das Volumen zwischen den Wänden berücksichtigt werden muss o.ä.?

zu c)
Da bin ich mir etwas unschlüssig, ich hatte da mal eine Lösung heraus, habe aber leider den Zettel nicht mehr :(
Auf jeden Fall bin ich momentan nur soweit, dass die Integralrechnung mit 500 gleichsetze und die obere Grenze als Variabel nehme, sprich:
[mm] \pi*\integral_{-1}^{b}{f(x)² dx}=500 [/mm]

und diese dann nach b auflöse, wobei ich dann ja nur die Schale verkleiner und nicht das Volumen dementsprechend.

Weiß jemand Rat? Dem einen wird die Aufgabe vllt bekannt sein. Ist ein Teil einer alten Abituraufgabe  für den CAS.

Danke für eure Hilfe

        
Bezug
Volumen Rotation x-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Mi 15.04.2009
Autor: leduart

Hallo
Dein Ansatz ist richtig. nur muss dir klar sein, dass dein b dann der abstand vom unteren Rand ist. also noch in abstand vom oberen umrechnen. ob du das Vol der Fl. oder des Behaelters bis b ausrechnest sagt doch das Integral nicht.;-)
Gruss leduart

Bezug
                
Bezug
Volumen Rotation x-Achse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Mi 15.04.2009
Autor: n0rdi

ok cool danke (:

ich habe es gerade mit der lösung, die ich eben bekommen habe, abgeglichen und es passt alles ;)

Danke nochmals

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]