www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationVolumen Rotationskörpers coshx
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Volumen Rotationskörpers coshx
Volumen Rotationskörpers coshx < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen Rotationskörpers coshx: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 So 16.07.2006
Autor: Mattes_01

Aufgabe
Bestimmen Sie das Volumen des Rotationskörpers der Kurve cosh(x), rotierend um die y-Achse zwischen den Schnitten bei x = 0 und x = [mm] x_0. [/mm]

Halo zusammen!

Also irgendwie komme cih da nicht weiter.....

Ich habe mir gedacht, ich teile den Paraboloie in ganz viele kleine Kreise auf, gegeben durch  [mm] \pi [/mm] * [mm] cosh^{2}(x) [/mm]
und dann integriere ich über die x-Achse von 0 - [mm] x_0 [/mm]

Aber irgendwie kommt mir das komisch vor, villeicht kann mir da einer von euch helfen, das kann ja eigentlich nicht so schwer sein, und wie ich mich kenne habe cih da wiedermal einen kleinen Denkfehler drin.....

Habe für die Übersichtlichkeit mal eine Skizze angehangen, da erkennt man, wie ich mir das vorstelle.

Gruß Mattes


[Dateianhang nicht öffentlich]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Volumen Rotationskörpers coshx: mit Umkehrfunktion arbeiten
Status: (Antwort) fertig Status 
Datum: 10:15 Mo 17.07.2006
Autor: Roadrunner

Hallo Mattes!


Von der prinzipiellen Überlegung liegst Du gar nicht so falsch. Allerdings musst Du bedenken, dass die einzelnen Radien Deiner Kreise (= Absatnd y-Achse zum Funktionsgraph) nicht angegeben werden durch [mm] $\cosh(x)$ [/mm] sondern durch die entsprechende Umkehrfunktion!

Denn die Formel für das Rotationsvolumen um die y-Achse lautet allgemein:

[mm] $V_y [/mm] \ = \ [mm] \pi*\integral_{y_1}^{y_2}{x^2 \ dy}$ [/mm]

Dabei ist dann $x_$ die entsprechende Umkehrfunktion zu $y_$ .


Das heißt hier also: $x \ = \ arccosh(y) \ = \ [mm] \ln\left(y\pm\wurzel{y^2-1} \ \right)$ [/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]