www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungVolumen einer Pyramide
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Volumen einer Pyramide
Volumen einer Pyramide < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen einer Pyramide: Frage
Status: (Frage) beantwortet Status 
Datum: 15:50 Di 04.01.2005
Autor: jasiVIP

Ich weis dass das volumen einer pyramide hilfreich dazu ist, das volumen einer kugel auszurechnen.
Kann man das Volumen einer Pyramide mit einem Satz herausfinden?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Volumen einer Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 04.01.2005
Autor: Bastiane

Hallo!
> Ich weis dass das volumen einer pyramide hilfreich dazu
> ist, das volumen einer kugel auszurechnen.

Das würde mich ja mal interessieren, wie das zusammenhängt!?

> Kann man das Volumen einer Pyramide mit einem Satz
> herausfinden?

Ich weiß nicht, was du haben möchtest. Mir fällt da nur etwas ein, dass wir in Analysis 3 auf der Uni gelernt haben, aber das ist für dich wahrscheinlich viel zu schwierig.
Das Volumen einer Pyramide ist aber:
[mm] V_{Pyramide}=\bruch{1}{3} [/mm] Grundfläche*Höhe

Hilft dir das?

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Volumen einer Pyramide: Antwortversuch
Status: (Antwort) fertig Status 
Datum: 17:34 Di 04.01.2005
Autor: e.kandrai

Also was genau die Pyramide mit der Kugel zu tun haben soll, weiß ich so auf Anhieb auch nicht...

Was bei Vektorrechnung oft gebraucht wird, um ein Pyramidenvolumen zu berechnen: oft sind die 4 Eckpunkte der Grundfläche gegeben, sowie die Spitze.
Wenn die 4 Eckpunkte eine "einfache" Form haben (z.B. Quadrat, Rechteck etc.), dann lässt sich die Grundfläche ja leicht berechnen (oft beginnt die Aufgabe mit "Zeigen Sie, dass die 4 Punkte ein Quadrat bilden" oder ähnlich).

Dann braucht man noch die Höhe, also den senkrechten Abstand der Spitze zu dieser Bodenebene. Und die kann man leicht mit Hilfe der Hesse-Normalen-Form (HNF) berechnen: einfach die HNF der Grundfläche bestimmen, dort die Koordinaten der Spitze einsetzen, und fertig (falls negativ, einfach den Betrag bilden) - man hat die Höhe, und kann mit Bastianes Formel das Volumen berechnen.

Bezug
        
Bezug
Volumen einer Pyramide: Nicht Pyramide sonder Kegel
Status: (Antwort) fertig Status 
Datum: 20:51 Di 04.01.2005
Autor: moudi

Das ist im Prinzip fast richtig. Man braucht nicht das Volumen einer Pyramide dazu, sonder das Volumen eines Kegels (hat aber die gleiche Volumenformel [mm]V=\frac{G\cdot h}{3}[/mm]).

Aber weiter braucht man noch das Prinzip von Cavallieri:

Sind zwei Körper gleich gross und sind die Querschnittsflächen in jeder Höhe gleich gross, dann haben die Körper das gleiche Volumen.

Das wendet man jetzt folgendermassen an. Man betrachte eine Halbkugel (Radius r), die auf der Aequatorfläche steht. Dann umschliesst man die Halbkugel mit  einem Zylinder (Grundkreisradius r, Höhe r).

Der erste Körper ist (aufgepasst!), das was vom Zylinder übrig bleibt, wenn man die Halbkugel wegnimmt.

Der zweite Körper ist ein auf der Spitze stehender Kegel der Höhe r und mit Grundkreisradius r.

Jetzt zeigt man, dass diese beiden Körper das Cavallieriprinzip erfüllen.

Wir schneide beide Körper in der Höhe h entzwei.  Die Querschnittsfläche des Kegels ist ein Kreis mit Radius h. Die Fläche ist also [mm]\pi h^2[/mm].
Die Querschnittsfläche des ersten Körpers ist ein Kreisring mit den Radien [mm]\sqrt{r^2-h^2}[/mm] und r. Berechnet man die Fläche, so erhält man wiederum [mm]\pi h^2[/mm].

Also haben die beiden Körper das gleiche Volumen (nach Cavallieri).
Es gilt also  
[mm]V_{\mathrm{Kegel}}=V_{\mathrm{Zylinder}}-V_{Halbkugel}[/mm]
daraus kann man dann das Volumen der Kugel bestimmen, da man die Volumen von Kegel und Zylinder kennt.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]