Volumen eines Körpers < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Wie fange ich hier an? Ich denke mal, man muss ein Bereichsintegral draus machen, oder?
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Hallo mac dadda,
da in der Definition der Menge B die x- und y-Koordinaten nur in der Form [mm] x^2+y^2 [/mm] vorkommen, ist jeder Schnitt durch B parallel zur x-y-Ebene ein Kreis, dessen Radius von z abhängt.
Es reicht also, wenn du den Schnitt durch die x-z-Ebene legst, und die entstehende ebene Figur um die z-Achse rotieren lässt. Das erlaubt dir zum einen, die Figur zu zeichnen, und zum anderen kannst du die Formel für das Volumen eines Rotationskörpers benutzen.
Gruss,
SirJective
|
|
|
|
|
ok, ich hatte es schon geteichnet, war mir aber sehr unsicher. Deine Hilfe widerspricht meiner Zeichnung wenigstens nicht, oder?
[Dateianhang nicht öffentlich]
mehr morgen
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:45 Do 15.07.2004 | Autor: | Paulus |
Hallo mac dadda
du hast ein Fass gezeichnet, statt eine Vase.
Zeichne doch mal die Funktion [mm] $(2+\sin(x)^{2}$ [/mm] auf (beachte das Quadrieren!) und denke diese Kurve um die x-Achse rotiert. Das sieht dann schon etwas anders aus!
Bei $x = 0$ zum Beispiel ist der Radisu $4$, bei $x = [mm] \bruch{\pi}{2}$ [/mm] ist der Radius $9$, bei $x = [mm] \pi$ [/mm] wieder $4$, bei $x = [mm] \bruch{3\pi}{2}$ [/mm] sehr eng (Radius $1$), und bei $x = [mm] 2\pi$ [/mm] wieder $4$.
Da ihr offenbar, nach der Kugelschalenaufgabe zu urteilen, die Koordinatentransformationen beim Integrieren beherrscht, würde ich in diesem Falle sogar vorschlagen, Zylinderkoordinaten einzuführen. Dann musst du nur die Funktion $1$ über dem ganzen Bereich der Vase integrieren. (Die Funktionaldeterminante dieser Transformation ist ja bekanntlich $r$)
Mit lieben Grüssen
|
|
|
|
|
ok, stimmt. Man muss also eine Sinus-Schwingung über 2Pi "querlegen". ch habe nochmal gezeichnet:
[Dateianhang nicht öffentlich]
Sind die Radien der Kreise um die z-Achse denn 4,9,4,1,4 oder 2,3,2,1,2 ? Ich meine [mm] x^2+y^2=r^2 [/mm] ist ja eine allgemeine Formel für einen Kreis, oder Halbkreis? Das r steht da ja im Quadrat, ist der tatsächliche Radius dann r oder [mm] r^2 [/mm] ?
Ist verständlich, was ich meine?
Den Rest probiere ich jetzt mal. Danke für die Hilfe soweit, ich weiss es wirklich zu schätzen.
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
|
macht ja nichts, betrachten wir es doch einfach als Test. Ich möchte ja nicht alles vorgekaut kriegen, sondern muss es ja verstehen lernen, denn in der Klausur muss ich es ja auch selbst machen.
Mit der Koordinaten-Transformation habe ich allerdings noch meine Probleme, irgendwelche Tips?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:36 Do 15.07.2004 | Autor: | Paulus |
Hallo mac dadda
Ja, selbstverständlich habe ich einen Tipp.
Du hast die Figur ja schön gezeichnet. Jetzt überlegst du dir, wenn du in Zylinderkoordinaten $(r, [mm] \varphi [/mm] ,z)$ rechnest, welche Werte denn die einzelnen Parameter annehmen müssen, damit das ganze Volumen überstrichen wird. Dann überlegst du auch noch, in welcher Reihenfolge man diese Parameter am Besten laufen lassen soll, damit das Ganze möglichst einfach wird.
Es wird klar, dass [mm] $\varphi$ [/mm] einfach von $0$ bis [mm] $2\pi$ [/mm] läuft, und das auf jeder Höhe, d.h. bei jedem $z$-Wert. Somit würde ich einfach [mm] $\varphi$ [/mm] als Erstes berücksichtigen.
Wenn du nun $z$ betrachtest, dann merkst du, dass eine Gerade parallel zur $z$-Achse zum Teil durch den Vasenrand regelrecht zerstückelt wird. Es empfielt sich deshalb, $z$ erst am Schluss zu berücksichtigen, zumal, wenn man noch $r$ betrachtet, das eigentlich schön von $0$ bis [mm] $(2+\sin{z}) [/mm] $ läuft (unabhängig vom Winkel [mm] $\varphi$). [/mm] Dann läuft $z$ ganz einfach von $0$ bis [mm] $2\pi$. [/mm]
Es ist also die Funktion $1$ über dem ganzen Bereich zu integrieren. Durch die Substitution $x := [mm] r\cos{\varphi};\, [/mm] y := [mm] r\sin{\varphi}; [/mm] z:= z$ muss also noch die ganze Funktion mit $r$ multipliziert werden, so dass du nur noch Folgendes auszuwerten hast:
[mm] $\integral_{0}^{2\pi} \integral_0^{(2+\sin{z})} \integral_0^{2\pi} [/mm] r [mm] \, d\varphi \, [/mm] dr [mm] \, [/mm] dz$
Wobei die Integrale "von innen nach aussen" aufzulösen sind.
Alles klar?
Mit lieben Grüssen
|
|
|
|
|
ok, soweit habe ich es, denke ich, verstanden. Das Ergebnis ist dann: [mm] 4*Pi^2 [/mm] - Pi
richtig?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:56 Sa 17.07.2004 | Autor: | Paulus |
Hallo mac dadda
einer von uns zwei hat sich wohl verrechnet. Ich bekomme das Resultat
[mm] $9\pi^{2}+4\pi$
[/mm]
Kannst du das nochmals überprüfen?
Mit lieben Grüssen
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:38 Mo 19.07.2004 | Autor: | Paulus |
Hallo Gäste
wie uns von anonymer Seite gemeldet worden ist, wäre die Lösung von SirJective für diese Aufgabe viel einfacher gewesen. Das mag zwar stimmen, man muss aber immer bedenken, dass oftmals Aufgaben gegeben werden, deren Ziel nicht primär der einfachste Lösungsweg ist, sondern: eine neue Technik zu üben, deren Resultat dann mit dem Resultat der Lösung mittels altbekannten Methoden verglichen werden kann, um so das Vertrauen in die neue, oft globaler anzuwendende Methode, zu stärken.
Eine raffiniert aufgebaute, 2-teilige Aufgabe, deren 1. Teil leicht "herkömmlich" gelöst werden kann, deren 2. Teil aber auf herkömmliche Weise nur unter enormen Schwierigkeiten gelöst werden könnte, die Koordinatentransformation das Ganze zu einem Kinderspiel werden lässt, wird in diesem Strang https://matheraum.de/read?f=17&t=1631&i=1631, der aber leider nicht zu Ende geführt worden ist, behandelt. Ich hege aber immer noch die kleine Hoffnung, dass dieser Strang wieder aufgenommen wird. (Frust um vergebene Liebesmüh', falls nicht)
Der Strang https://matheraum.de/read?f=1&t=1564&i=1564
belegt auch, dass das mac dadda offenbar etwas über die Integralrechnung mit Koordinatentransformation lernen will.
Somit erscheint es sinnvoll, die Lösung mittel Koordinatentransformation anzustreben, und das Resultat dann zum Schluss mit der Lösung von SirJective zu vergleichen.
Ein eindrückliches Beispiel für die Kraft der Koordinatentransfomation liefert übrigens auch dieses hier (Fläche eines Kreises):
[mm] $\integral_{-R}^{+R} \integral_{-\wurzel{R^{2}-x^{2}}}^{+\wurzel{R^{2}-x^{2}}} \, [/mm] dydx$
das direkt auszurechnen recht schwierig ist, mit Uebergang zu Polarkoordinaten aber geradezu banal wird:
[mm] $\integral_{0}^{R} \integral_{0}^{2\pi}r \, d\varphi{dr}$
[/mm]
Mit lieben Grüssen
|
|
|
|