www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeVolumenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - Volumenberechnung
Volumenberechnung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Sa 10.01.2009
Autor: Arnie09

Aufgabe
Es soll eine Schale aus Birnbaumholz hergestellt werden. Dazu werden geeignete Funktionen ausgewählt. Es wird die Schale betrachtet, die durch Rotation der zugehörigen Graphen um die x-Achse entsteht. Für die Außen- und Innenwand werden die beiden folgenden Funktionen p und [mm] f_{2,5} [/mm] verwendet mit

p(x) = [mm] \bruch{2}{25}*(x+3)²+3; [/mm] -3 [mm] \le [/mm] x [mm] \le [/mm] 6  Außenwand

[mm] f_{2,5}(x)=\wurzel{x²+5x+4}; [/mm]  -1 [mm] \le [/mm] x [mm] \le [/mm] 6    Innenwand

Es werden 500 cm³ Flüssigkeit in die Schale gefüllt. Berechnen Sie den Abstand des Flüssigkeitsspiegels vom oberen Rand der Schale.

Hallo,

wie ich den Abstand vom Rand heraus bekomme, habe ich soweit verstanden, ich bin nun auf folgende Zeile gekommen:

456,9646 = [mm] b³-\bruch{5}{2}b²+4b [/mm]

Meine Frage ist nun, wie ich das b aus der Gleichung herausgelöst bekomme. Dass ich das b ausklammern kann, ist klar, aber was passiert dann mit dem Klammerninhalt? Die Frage, wie man dann vorgeht, stellt sich mir schon längerer Zeit, allerdings geht das hier nicht anders. Könnt ihr mir vielleicht einen Tipp geben, wie ich nach dem Ausklammern vorgehen muss?

Liebe Grüße,

Arnie

        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Sa 10.01.2009
Autor: reverend

Ich habe nicht nachgerechnet, wie Du zu Deiner Gleichung kommst, aber ich kann Dir immerhin verraten, dass sie nur eine Lösung hat, etwa bei b=8,4404388.

Das kann ja nach der Aufgabenstellung nicht stimmen, oder?

Bezug
                
Bezug
Volumenberechnung: Cardano?
Status: (Frage) überfällig Status 
Datum: 17:52 So 11.01.2009
Autor: Arnie09

Hallo,

nein, irgendwie nicht :-).
Ich bin auf die Gleichung gekommen, da die Flüssigkeit ja nur in dem Rotationskörper der Funktion für die Innenwand gefüllt werden kann, also:

V= [mm] \pi \integral_{a}^{b}{[ \wurzel{x²+5x+4}]² dx} [/mm]
500= [mm] \pi \integral_{-1}^{b}{x²+5x+4 dx} [/mm]
      = [mm] \pi [\bruch{1}{3}b³+\bruch{5}{2}b²+4b+\bruch{1}{3}-\bruch{5}{2}+4] [/mm]
[mm] =\pi (\bruch{1}{3}b³+\bruch{5}{2}b²+4b+\bruch{11}{6}) [/mm]
[mm] \bruch{500}{\pi}=\bruch{1}{3}b³+\bruch{5}{2}b²+4b+\bruch{11}{6} |-\bruch{11}{6} [/mm]
[mm] 157,3216=\bruch{1}{3}b³+\bruch{5}{2}b²+4b [/mm]
471,9648 = b³+7,5b²+12b
Okay, da scheint ein Fehler gewesen zu sein.

Für die Lösung habe ich die Cardano-Formel gefunden, allerdings habe ich bislang noch nichts von einer Cardano-Formel im Unterricht gefunden, daher habe ich dazu eine Frage bei der Lösung:

ursprünglich:
[mm] \bruch{1}{3}b³+\bruch{5}{2}b²+4b-157,3216=0 [/mm]
[mm] a=\bruch{1}{3} [/mm]
[mm] b=\bruch{5}{2} [/mm]
c=4
d=-157,3216

geteilt durch a, wg unterscheidung b=x
x³+7,5x²+12x-471,9648=0
ersetze x durch [mm] z=x+\bruch{b}{3a} [/mm]
[mm] z=x+\bruch{5}{2*3*\bruch{1}{3}} [/mm]

[mm] z=x+\bruch{5}{2} [/mm]

[mm] x=z-\bruch{5}{2} [/mm]

z eingesetzt:

[mm] (z-\bruch{5}{2})³+7,5(z-\bruch{5}{2})²+12(z-\bruch{5}{2})-471,9648=0 [/mm]
[mm] z³-3z²*\bruch{5}{2}+3z\bruch{25}{4}-\bruch{125}{8}+7,5z²-37,5z+46,875+12z-30-471,9648=0 [/mm]
wenn ich mich nicht verrechnet habe, dann müsste:
z³-6,75z-470,7148=0
original:
y³+3py+2q
3p=-6,75
p=-2,25
2q=-470,7148
q=-235,3574

Diskriminante zur Bestimmung der Lösungsmöglichkeiten:

D=q²+p³
D=-235,374²+(-2,25)³
D=55381,715

Da die Diskriminante positiv ist, müssten dann ja eigentlich eine reele und zwei komplexe Lösungen herauskommen.

Soo... [buchlesen]
z=u+v
z³=3uvz+(u³+v³)=-ay-b   // ist das eigentlich einmal vereinbart worden oder weshalb wird das so gesetzt?

dh. 3uv=-a
[mm] 3uv=-\bruch{1}{3} [/mm]
nach v:
[mm] v=-\bruch{1}{u} [/mm]

in u³+v³=-b
[mm] u³+v³=-\bruch{5}{2} [/mm]
[mm] u³+(-\bruch{1}{u})³=-\bruch{5}{2} [/mm]
[mm] u³-\bruch{1}{u³}=-\bruch{5}{2} [/mm] | [mm] +\bruch{5}{2} [/mm]  |*u³
[mm] u^6+\bruch{5}{2}u³-1=0 [/mm]
setze [mm] u³=\delta [/mm]
[mm] (\delta)²+\bruch{5}{2}*\delta-1=0 [/mm]
...sodass ich das jetzt per PQ-Formel auf die Lösungen kommen müsste:
[mm] \delta_{1}=0,350781 [/mm]
[mm] \delta_{2}=-2,85078 [/mm]
Resubst.:
u= [mm] \wurzel[3]{0,350781}=0,705254 [/mm]
[mm] u_{2}=\wurzel[3]{-2,85078}=-1,4179 [/mm] //brauche ich i eigentlich nur geradzahligen Wurzeln?

u in v:
[mm] v_{1}=-\bruch{1}{0,705254}=-1,41793 [/mm]
[mm] v_{2}=-\bruch{1}{-1,4179}=0,705268 [/mm]

stimmt das bis jetzt soweit?
Muss das wirklich so aufgetrennt werden, obwohl für z dann nur eine Lösung herauskommt? Oder gibt es da noch Ausnahmen? Hat das eine bestimmte Bedeutung, dass z negativ geworden ist?

z=0,705254-1,41793
z=-1,4179+0,705254
z=-1

Resubstitution:
[mm] z=x+\bruch{5}{2} [/mm]
[mm] x=-1-\bruch{5}{2} [/mm]
x=-3,5

Was ist jetzt allerdings mit dem f²+f+1=0 gemeint und wie komme ich von der Gleichung auf [mm] f_{1,2}=0,5(-1\pm i*\wurzel{3})? [/mm] Ich denke mal, dass das i aus der negativen Wurzel kommt, aber wird für f dann die ursprüngliche Gleichung oder die mit geteilt durch a oder die mit [mm] \delta [/mm] verwendet?
Ich weiß, es sind etliche Fragen, aber ich hoffe, ihr könnt mir zumindest bei einigen davon weiter helfen und mir vll sagen, ob ich momentan auf dem richtigen Weg bin.

Liebe Grüße und vielen Dank,
Arnie

Bezug
                        
Bezug
Volumenberechnung: x_{2,3}
Status: (Frage) überfällig Status 
Datum: 18:25 So 11.01.2009
Autor: Arnie09

Ich habe eben eine andere Lösungsform für die komplexen Lösungen gefunden, könntet ihr einmal schauen, ob das so stimmt?

[mm] z_{2,3}=-\bruch{1}{2}(u+v) \pm i*\bruch{\wurzel{3}}{2}(u-v) [/mm]
[mm] =-\bruch{1}{2}(0,705254+(-1,41793)) \pm i*\bruch{\wurzel{3}}{2}(0,705254-(-1,41793)) [/mm]
=0,356338 [mm] \pm i*\bruch{\wurzel{3}}{2}(2,123164) [/mm]
=0,356338 [mm] \pm [/mm] i*1,8387

Resubst.:

x = z + [mm] \bruch{5}{2} [/mm]

x=0,35338 [mm] \pm [/mm] i*1,8387 - [mm] \bruch{5}{2} [/mm]
x=-2,143662 [mm] \pm [/mm] 1,8387i

Dh. müsste ich dass dann auf der Gauß'schen Zahlenebene eintragen, um herauszufinden, für welchen anderen möglichen Wert das Volumen der Schale 500 cm³ betragen kann?

Liebe Grüße,

Arnie

Bezug
                                
Bezug
Volumenberechnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 17.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Volumenberechnung: numerische Annäherung
Status: (Antwort) fertig Status 
Datum: 20:06 So 11.01.2009
Autor: reverend

Hallo Arnie,

Cardano ist mir zu mühsam, außerdem ist hier ja keine "schöne" rationale Lösung zu erwarten, wenn ich mir die Herkunft des absoluten Gliedes so anschaue: [mm] \bruch{500}{\pi}-\bruch{11}{6} [/mm]

Das hast Du ja auf sieben gültige Stellen gerundet: -157,3216

Mir (und ich vermute dem Aufgabensteller auch!) würde hier eine numerische Lösung vollauf genügen. Genauer muss sie nicht sein.

Das lässt sich mit einem kleinen Programm oder einem Grafiktaschenrechner schnell bestimmen. Die Lösung ist (in gleicher Genauigkeit wie oben) 5,568034.

lg,
reverend

Bezug
                                
Bezug
Volumenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Di 13.01.2009
Autor: Arnie09

Hallo reverend,

ich habe gestern versucht, das Newton Verfahren anzuwenden und bin auf das gleiche Ergebnis gekommen :-), allerdings konnte ich bislang noch nicht den Punkt finden, wo bei Cardano dann der Fehler war, da für die reelle Lösung ein anderer Wert herauskommt.
Der Aufgabensteller hat dazu nur die Ursprungsformel geschrieben mit [mm] V=\pi [/mm] ... [mm] \approx [/mm] 5,57, ohne einen Hinweis, wie man die Gleichung am besten lösen sollte...
Aber danke auf jeden Fall.


Liebe Grüße,
Arnie

Bezug
                        
Bezug
Volumenberechnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 17.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]