www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieVolumenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Volumenberechnung
Volumenberechnung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Di 09.02.2010
Autor: Mofdes

Aufgabe
Berechnen Sie das Volumen des Körpers, welcher von den Flächen [mm] y=(x-1)^2 [/mm] , y=4 , z=0 und z=y begrenzt wird.

Der Körper einem Hockeytor ähnlich. Zur Volumenberechnung muss man dreimal über 1 integrieren.
Als Grenzen habe ich folgendes festgelegt:
-1<x<3
[mm] (x-1)^2
Wie muss ich nun die Grenzen für z wählen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Mi 10.02.2010
Autor: Al-Chwarizmi


> Berechnen Sie das Volumen des Körpers, welcher von den
> Flächen [mm]y=(x-1)^2[/mm] , y=4 , z=0 und z=y begrenzt wird.
>  Der Körper einem Hockeytor ähnlich. Zur
> Volumenberechnung muss man dreimal über 1 integrieren.
>  Als Grenzen habe ich folgendes festgelegt:
>  -1<x<3
>  [mm](x-1)^2
>  
> Wie muss ich nun die Grenzen für z wählen?

     Natürlich 0<z<y !

Und vor allem musst du noch die Reihenfolge der Integrationen
festlegen.


Hallo Mofdes,

ich würde zuallererst den Körper in x-Richtung verschieben,
um den parabolischen Zylinder [mm] y=x^2 [/mm] anstatt [mm] y=(x-1)^2 [/mm] als
Begrenzung nehmen zu können, und dann das Volumen in
zwei gleiche Hälften aufteilen.

LG    Al-Chw.

Bezug
                
Bezug
Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:12 Mi 10.02.2010
Autor: Mofdes

Vielen Dank, nun habe ich folgende Grenzen gewählt:
Für die Innere Integration: 0<z<y
Für die Mittlere Integration: [mm] x^2 Für die Äußere Integration: 0<x<2

Nach dem Integrieren habe ich dann das Ergebnis verdoppelt.
Nun erhalte ich einen Flächeninhalt von 25,6. Stimmt das, bzw. war der Weg nun richtig?

Bezug
                        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Mi 10.02.2010
Autor: leduart

Hallo
Wenn du uns nur ein Zahlenergebnis schreibst, müssten wir die ganze Rechnung machen, um zu sagen obs richtig ist. Wir müssen und wollen aber keine Aufgaben so einfach aus Spass rechnen.
Deinen Rechenweg kontrollieren ja. dass du nen TR bedienen kannst glauben wir dann.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]