Volumenberechung Hyperbel < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:44 So 13.11.2011 | Autor: | diolob |
Aufgabe | Eine Seiltrommel entsteht durch Rotation einer rechtwinkligen Hyperbel um ihre Nebenachse. Der Kehlkreis hat den Radius r1=20 cm, für die Randkreise r2=35 cm. Was wiegt die Trommel, wenn Sie aus Eisen vom Artgewicht γ= 7,3 p/cm3 besteht [mm] \gamma [/mm] = [mm] 7,3p/cm^3 [/mm] ? |
Ich hoffe Sie/ihr könnt mir helfen.
Mittlerweile hab ich herausgefunden, dass die Nebenachse die Achse ist, die längs durch den Rotationskörper geht ( und die Hauptachse die, die den Kehlkreis durchsticht? hoffe, dass das so richtig herum ist). Die Formel, mit der man anfangen muss, ist laut Formelsammlung [mm] \frac{x^{2}}{a^{2}} [/mm] - [mm] \frac{y^{2}}{b^{2}} [/mm] = 1 .
Aus der Aufgabe lese ich heraus, dass es den Punkt (20|0)gibt, man also für x = 20 und für y = 0 einsetzt, und das man für a = 20 einsetzen muss. Als Ergebnis bekomme ich dann aber 1 = 1 heraus, was mir nicht so wirklich hilft.
Wenn ich erst mal das Volumen habe, würde ich das Gewicht sicher hinbekommen. Aber an dem Volumen beiße ich mir die Zähne aus. Mit einer Längenangabe wüsste ich wie, aber die gibt es ja leider nicht.
Vielen Dank für Ihre/ eure Antworten im Voraus !!!
Lg diolob
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Volumenberechnung-Hyperbel
http://www.matheboard.de/board.php?boardid=18
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:27 So 13.11.2011 | Autor: | chrisno |
> Eine Seiltrommel entsteht durch Rotation einer
rechtwinkligen !
> Hyperbel um ihre Nebenachse. Der Kehlkreis
> hat den Radius r1=20 cm, für die Randkreise r2=35 cm. Was
> wiegt die Trommel, wenn Sie aus Eisen vom Artgewicht γ=
> 7,3 p/cm3 besteht [mm]\gamma[/mm] = [mm]7,3p/cm^3[/mm] ?
> Ich hoffe Sie/ihr könnt mir helfen.
>
> Mittlerweile hab ich herausgefunden, dass die Nebenachse
> die Achse ist, die längs durch den Rotationskörper geht (
> und die Hauptachse die, die den Kehlkreis durchsticht?
> hoffe, dass das so richtig herum ist). Die Formel, mit der
> man anfangen muss, ist laut Formelsammlung
> [mm]\frac{x^{2}}{a^{2}}[/mm] - [mm]\frac{y^{2}}{b^{2}}[/mm] = 1 .
Für den besonderen Fall gilt $a = b$
> Aus der Aufgabe lese ich heraus, dass es den Punkt
> (20|0)gibt, man also für x = 20 und für y = 0 einsetzt,
> und das man für a = 20 einsetzen muss. Als Ergebnis
> bekomme ich dann aber 1 = 1 heraus, was mir nicht so
> wirklich hilft.
Da bist Du über das Ziel hinausgeschossen. Du hast a = 20 herausgefunden. Das brauchst Du um die Länge der Trommel zu berechnen.
>
> Wenn ich erst mal das Volumen habe, würde ich das Gewicht
> sicher hinbekommen. Aber an dem Volumen beiße ich mir die
> Zähne aus. Mit einer Längenangabe wüsste ich wie, aber
> die gibt es ja leider nicht.
Volumen eines Rotationskörpers.
|
|
|
|