www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisVorgegebene Eigenschaften
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Vorgegebene Eigenschaften
Vorgegebene Eigenschaften < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorgegebene Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Di 29.11.2005
Autor: philipp-100

Hallo,

ich habe :

eine ganzrationale Funktion vom 3 Grad symetrisch zum Koordinatensursprung sie schneidet die x achse an der stelle 1.
ausserdem schließt de Graph im 1 Quadranten eine Fläche von 12 ein
Bestimme den Funktionsterm.

Wie ich vorgegangen bin:

[mm] x^3+ax^2+bx+c [/mm]

da die Funktion symetrisch ist habe ich [mm] ax^2 [/mm] und c einfach weggestrichen.
Und dann komm ich nicht mehr weiter.
Weiss jdm Rat ?


        
Bezug
Vorgegebene Eigenschaften: Hinweise
Status: (Antwort) fertig Status 
Datum: 21:11 Di 29.11.2005
Autor: Loddar

Hallo Philipp!


> Wie ich vorgegangen bin:
> [mm]x^3+ax^2+bx+c[/mm]

[notok] Da fehlt noch ein Koeffizient vor dem [mm] $x^3$ [/mm] :

$f(x) \ = \ [mm] a*x^3 [/mm] + [mm] b*x^2 [/mm] + c*x + d$


Durch die Punktsymmetrie verbleibt dann noch (wie von Dir bereits erkannt):

$f(x) \ = \ [mm] a*x^3 [/mm] + c*x$


Der Schnittpunkt mit der x-Achse bei $x \ = \ 1$ gibt doch eine Nullstelle an:
$f(1) \ = \ 0$


Und durch die Flächenangabe (in Verbindung mit der o.g. Nullstelle) wissen wir:

$A \ = \ [mm] \integral_{0}^{1}{f(x) \ dx} [/mm] \ = \ 12$


Kommst du mit diesen Hinweisen nun etwas weiter?


Gruß
Loddar


Bezug
                
Bezug
Vorgegebene Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Di 29.11.2005
Autor: philipp-100

Ja danke Loddar,

aber bei mir hackts noch wenn ich a und c bestimme.
Weil auch wenn ich es gleich der Fläche setze kann ich a und c nicht genau bestimmen.

Bezug
                        
Bezug
Vorgegebene Eigenschaften: integrieren
Status: (Antwort) fertig Status 
Datum: 21:47 Di 29.11.2005
Autor: Loddar

Hallo Philipp!


Aber Du kannst doch von der allgemeinen Form $f(x) \ = \ [mm] a*x^3 [/mm] + c*x$ die Stammfunktion $F(x) \ =\ ...$ bilden und die gegebenen Grenzen einsetzen.

Damit hast Du dann automatisch Deine 2. Bestimmungsgleichung.


Gruß
Loddar


Bezug
                                
Bezug
Vorgegebene Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Di 29.11.2005
Autor: philipp-100

Hab ich auch gemacht.

[mm] 1/4*a*x^4+1/2*c*x^2 [/mm] und dann für x=1 einsetzen und das gleich der Fläche

Bezug
                                        
Bezug
Vorgegebene Eigenschaften: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Di 29.11.2005
Autor: philipp-100

ich hab mir das mal gezeichnet,
und dann es sollte für a etwas negatives raus kommen , damit sich eine Fläche im 1 Quadranten bildet.
allerdings klappt dein Lösungsansatz bei mir nicht.
WIe soll ich denn a und c rausbekommen wenn ich beides noch in meiner Gleichung habe ?

Bezug
                                        
Bezug
Vorgegebene Eigenschaften: 2. Gleichung
Status: (Antwort) fertig Status 
Datum: 00:38 Mi 30.11.2005
Autor: leduart

Hallo
du hast jetzt> [mm]1/4*a+1/2*c=12[/mm]
ausserdem hast du doch noch f(1)=0, das gibt die 2. Gleichung für a und c.
Lies die postings genauer, das stand schon in der ersten Antwort!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]