www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungVorkurs Aufgabe3 c)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Vorkurs Aufgabe3 c)
Vorkurs Aufgabe3 c) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorkurs Aufgabe3 c): Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:27 Do 09.04.2009
Autor: DrNetwork

http://www.matheforum.net/vorkurszettel?id=93

$ [mm] f_k(t)=80\cdot{}e^{k\cdot{}t}-\frac{1}{3}\cdot{}e^{2k\cdot{}t}=80\cdot{}e^{k\cdot{}t}-\frac{1}{3}\cdot{}\left(e^{k\cdot{}t}\right)^2 [/mm] $ ; $ [mm] t\in \IR [/mm] $.

c. Die t-Achse und der Graph von $ [mm] f_k [/mm] $ begrenzen eine bis „ins Unendliche reichende“ Fläche.
Berechnen Sie die Gleichung der zur t-Achse senkrechten Geraden g, die diese
Fläche in zwei Teilflächen einteilt, sodass der Inhalt der linken Teilfläche dreimal so groß ist wie der Inhalt der rechten Teilfläche.

[mm] A=\frac{80}{k}e^{kt}-\frac{1}{6k}e^{2kt}\Big|_{-\infty}^{ln(240)/k} [/mm]
[mm] A=\frac{9600}{k} [/mm]

A ist die gesamte Fläche damit die linke seite 3x größer wird nehm ich 3/4 davon und setze dann das Integral bis zur Grenze a ein. a ist also die gesuchte Größe

[mm] \frac{3}{4}A [/mm] = [mm] \frac{80}{k}e^{kt}-\frac{1}{6k}e^{2kt}\Big|_{-\infty}^{a} [/mm]

7200 = [mm] 80e^{ka}-\frac{1}{6}e^{2ka} [/mm]
7200 = [mm] e^{ka}(80-\frac{1}{6}e^{ka}) [/mm]

weiter weiss ich nicht... :(

        
Bezug
Vorkurs Aufgabe3 c): Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Do 09.04.2009
Autor: weduwe

mit [mm]e^{ka}=x [/mm] mußt du
[mm]x^2-480x+43200=0[/mm] lösen

Bezug
                
Bezug
Vorkurs Aufgabe3 c): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Fr 10.04.2009
Autor: DrNetwork

Hm okey... aber die Lösung muss doch eindeutig sein:

[mm] x_1 [/mm] = 360 [mm] \Rightarrow a=\frac{ln(360)}{k} [/mm]
[mm] x_2 [/mm] = 120 [mm] \Rightarrow a=\frac{ln(120)}{k} [/mm]

ist mein Ansatz vielleicht falsch?


Bezug
                        
Bezug
Vorkurs Aufgabe3 c): Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Fr 10.04.2009
Autor: M.Rex

Hallo

Das kann sein, dass die Gerade von k abhängig ist, du hast ja eine Funktionenschar, also für jedes k unterschiedliche Flächen, und damit auch unterschiedliche "Teilungsgeraden"

Marius

Bezug
                                
Bezug
Vorkurs Aufgabe3 c): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 Fr 10.04.2009
Autor: DrNetwork

Ne ist alles in Ordnung:

Nullstelle liegt bei [mm] \frac{ln(240)}{k} [/mm]

[mm] \frac{ln(360)}{k} [/mm] > [mm] \frac{ln(240)}{k} [/mm]
[mm] \frac{ln(120)}{k} [/mm] < [mm] \frac{ln(240)}{k} [/mm] das ist auch die richtige Lösung :)

Bezug
                        
Bezug
Vorkurs Aufgabe3 c): kleinerer Wert
Status: (Antwort) fertig Status 
Datum: 14:08 Fr 10.04.2009
Autor: Loddar

Hallo DrNetwork!


Da Du hier die Fläche links der Nullstelle [mm] $x_N [/mm] \ = \ [mm] \bruch{\ln(240)}{k}$ [/mm] betrachtest, ist hier auch nur der kleinere Werte gültig.


Gruß
Loddar


Bezug
                                
Bezug
Vorkurs Aufgabe3 c): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:12 Fr 10.04.2009
Autor: DrNetwork

Danke! ist mir auch vorkurzem aufgefallen :)

Bezug
                                
Bezug
Vorkurs Aufgabe3 c): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 Fr 10.04.2009
Autor: DrNetwork

Meine Frage ist nun etwas anderer Natur, wie schreib ich das meinem Mathe Lehrer am schönsten hin:

da Nullstelle bei [mm] \frac{ln(240)}{k} [/mm]

[mm] \frac{ln(360)}{k} [/mm] > [mm] \frac{ln(240)}{k} \Rightarrow a_1 \not\in [/mm] W
[mm] \frac{ln(120)}{k} [/mm] < [mm] \frac{ln(240)}{k} \Rightarrow a_2 \in [/mm] W

das W hab ich mir ausgedacht, für Wertemenge stimmt das so?

Bezug
                                        
Bezug
Vorkurs Aufgabe3 c): verbal
Status: (Antwort) fertig Status 
Datum: 14:17 Fr 10.04.2009
Autor: Loddar

Hallo DrNetwork!


Warum (be)schreibst Du es nicht in Worten wie ich in meiner obigen Antwort?


Gruß
Loddar


Bezug
                                                
Bezug
Vorkurs Aufgabe3 c): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Fr 10.04.2009
Autor: DrNetwork

wir kriegen Punkte für "Verwendung von Fachsprache und Fachsymbolik"

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]