www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikVtlgs-fkt. der Exponentialvtlg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Vtlgs-fkt. der Exponentialvtlg
Vtlgs-fkt. der Exponentialvtlg < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vtlgs-fkt. der Exponentialvtlg: Berechnen
Status: (Frage) beantwortet Status 
Datum: 13:35 Mi 05.01.2005
Autor: Chiquita


Kann mir jemand helfen bei der Integration der Dichtefunktion der Normalverteilung.

Die Dichtfunktion lautet [mm] f(x)=\lambda \exp^{-\lambda x} [/mm] für [mm] x \ge 0 [/mm]

herauskommen muss [mm]F(x) = 1-\exp^{-\lambda x} [/mm], mich würde aber interessieren, wie man darauf kommt.

Ich erinnere mich noch, dass mit partieller Integration begonnen wurde, dann erhalte ich [mm] \integral_{0}^{\infty} {\lambda \exp^{-\lambda x} dx}=\integral_{0}^{\infty} {\bruch{1}{\lambda}exp^{-\lambda x}dx} -\exp^{-\lambda x}[/mm]

Jetzt fehlt mir eigentlich nur noch der Schluss, warum der erste Teil auf der rechten Gleichungsseite gleich 1 sein muss. Vielleicht habe ich aber auch einen falschen Ansatz gewählt??

Bin für jede Hilfe dankbar!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vtlgs-fkt. der Exponentialvtlg: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Mi 05.01.2005
Autor: Brigitte

Hallo Chiquita!

> Kann mir jemand helfen bei der Integration der
> Dichtefunktion der Normalverteilung.

Du meinst die Exponentialverteilung, oder?

> Die Dichtfunktion lautet [mm]f(x)=\lambda \exp^{-\lambda x} [/mm] für [mm]x \ge 0[/mm]
> herauskommen muss [mm]F(x) = 1-\exp^{-\lambda x} [/mm] mich würde aber interessieren, wie man darauf kommt.
> Ich erinnere mich noch, dass mit partieller Integration begonnen wurde, dann erhalte ich
> [mm]\integral_{0}^{\infty} {\lambda \exp^{-\lambda x} dx}=\integral_{0}^{\infty} {\bruch{1}{\lambda}exp^{-\lambda x}dx} -\exp^{-\lambda x}[/mm]
> Jetzt fehlt mir eigentlich nur noch der Schluss, warum der erste Teil auf der rechten Gleichungsseite gleich 1 sein muss. Vielleicht > habe ich aber auch einen falschen Ansatz gewählt??

Hm. Hier braucht man doch gar keine partielle Integration. Die Stammfunktion von [mm] $f(x)=\lambda \exp^{-\lambda x}$ [/mm]
lautet direkt [mm] $-\exp^{-\lambda x}$. [/mm] Für die Verteilungsfunktion musst Du außerdem nur bis $x$ integrieren, also

[mm]F(x)=\integral_{0}^{x} {\lambda \exp^{-\lambda x} dx}=\left[-\exp^{-\lambda x}\right]_0^x =1-\exp^{-\lambda x}.[/mm]

Viele Grüße
Brigitte

Bezug
                
Bezug
Vtlgs-fkt. der Exponentialvtlg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 Mi 05.01.2005
Autor: Chiquita

Hallo Brigitte,

vielen Dank für die schnelle Hilfe.

Gruß
Chiquita

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]