www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieW-Fkt ermitteln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - W-Fkt ermitteln
W-Fkt ermitteln < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

W-Fkt ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:10 Fr 15.06.2007
Autor: sancho1980

Aufgabe
Sei n [mm] \in \IN, (\Omega, [/mm] P) ein W-Raum und [mm] X_1, X_2: \Omega \to [/mm] {0,...,n} zwei stochastische unabhaengige ZVen, die gleichverteilt auf {0,...,n} sind.

Geben Sie die Wahrscheinlichkeitsfunktion [mm] w_i [/mm] : {0,...,n} [mm] \to [/mm] [0,1] von [mm] X_i [/mm] an, i = 1,2.

Hallo,
ich habe versucht obiges zu loesen, bin mir aber extrem unsicher, weil ich mehr oder weniger einem Beispiel aus dem Skript gefolgt bin, ohne wirklich zu wissen, was ich da tue, deswegen wuerd ich mich freuen, wenn ihr mir sagt ob ich hier auf dem Holzweg bin:

So wie ich das verstehe, gilt fuer alle [mm] \omega_1, \omega_2 \in [/mm] {0,...,n}:

[mm] P_{(X_1,X_2)}({\omega_1,\omega2}) [/mm] = [mm] \bruch{1}{n^2} [/mm]

Also:

[mm] P_{X_1}({ \omega_1 }) [/mm] = [mm] P_{(X_1,X_2)}({ \omega_1 } [/mm] x {0,...,n}) = [mm] P_{(X_1,X_2)}({ \omega_1 } [/mm] x {0}) + ... + [mm] P_{(X_1,X_2)}({ \omega_1 } [/mm] x {n}) = n * [mm] \bruch{1}{n^2} [/mm] = [mm] \bruch{1}{n} [/mm]

Hab ich die Aufgabe richtig? Hab ich sie ueberhaupt richtig verstanden?

Gruss und danke,

Martin

        
Bezug
W-Fkt ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 03:26 Fr 15.06.2007
Autor: generation...x

Richtig, aber meinst du nicht, dass das ein bisschen "von hinten, durch die Brust, ins Auge" ist? Die Aufgabenstellung sagt doch "gleichverteilt auf [mm]\{1, \cdots, n\}[/mm]". Kann doch nix anderes herauskommen als [mm]\bruch{1}{n}[/mm], oder?

Bezug
                
Bezug
W-Fkt ermitteln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:45 Fr 15.06.2007
Autor: sancho1980

Tja, ich hab mir die Aufgaben ja nicht ausgedacht :-) Wahrscheinlich war ich mir auch deswegen so unsicher, weil das Ergebnis so triviel ist ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]