www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenWaagerechte Asymptote
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Waagerechte Asymptote
Waagerechte Asymptote < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Waagerechte Asymptote: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Mo 24.11.2008
Autor: krauti

Aufgabe
f(x) = 2x/(x-2)

Hallo!

Und zwar haben wir die waagerechte Asymptote der obengenannten Funktion in der Schule folgendermaßen bestimmt.

f(x) = 2x/(x-2) = (1/x (2x))/(1/x(x-2) = 2/(1-2/x)

|x| -> unendlich => f(x) = 2/(1-0) = 2

Leider kappiere ich dieses Verfahren nicht ganz genau. Kann mir es vielleicht jemand näher erklären?

Gruß
Krauti


        
Bezug
Waagerechte Asymptote: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Mo 24.11.2008
Autor: mimmimausi

Hi
> f(x) = 2x/(x-2) = (1/x (2x))/(1/x(x-2) = 2/(1-2/x)
>  
> |x| -> unendlich => f(x) = 2/(1-0) = 2

Wenn du x gegen unendlich streben lässt dann nähert sich der bruch 1/x den du hier 2/(1/x) stehen hast Null hat. Wenn die Zahl im Nenner immer größer wird ( das heißt gegen unendlich strebt) dann wird der Bruch immer kleiner. Der Nenner der ganzen funktion nähert sich also 1( da 1-0= 1) an. somit ist die waagerechte asymtote 2.
Hoffe ich konnte dir helfen.

Mfg mimmimausi




Bezug
                
Bezug
Waagerechte Asymptote: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Mo 24.11.2008
Autor: krauti

Aufgabe
[mm] \bruch{2x }{(x-2)} [/mm] = [mm] \bruch{(\bruch{1}{x} * 2x )}{( \bruch{1}{x} * (x-2)} [/mm]
= [mm] \bruch{2}{(1 - \bruch{2}{x})} [/mm]

|x| -> unendlich => f(x) = [mm] \bruch{2}{(1-0)} [/mm] = 2  

Also ich hab es nochmal schön abgeschrieben. Ich hab es leider immer noch nicht ganz verrstanden, warum erweitert man z.B. mit 1/x?

Bezug
                        
Bezug
Waagerechte Asymptote: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Mo 24.11.2008
Autor: Philipp91

Hi krauti,
nach deiner Methode bekommst du den Grenzwert der Funktion raus, also welchen Y-Wert sich die Funktion bei sehr großen x-Werten annähert.

Man klammert bei deiner Funktion das x aus, um so einen Überblick über das Verhalten der Funktion zu erhalten.
und so kommst du dann auf den Term
[mm]\bruch{2}{(1 - \bruch{2}{x})}[/mm]
An diesem Term erkennst du das sich die Funktion für immer größere X-Werte immer weiter dem Y-Wert 2 annähert.

Zum Thema Asymptoten ist zu sagen, dass diese Funktion 2 Asymptoten hat.
Einmal eine senkrechte Asymptote bei x = 2 und die waagerechte Asymptote bei y=2.
Ich hoffe das hilft dir

MFG Philipp


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]