Waagrecht und Flachstellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:25 Mi 17.05.2006 | Autor: | Soph.ie |
Aufgabe | Gegeben ist die Funktion [mm] f(x)=-\bruch{1}{8}x^{3}+\bruch{1}{2}x^{2}
[/mm]
a)Berechne Nulstellen sowie Art und Ort der Waagrecht und Flachstellen. |
Mit den Nullstellen habe ich keine Probleme.
Dafür mit den Waagrecht und Flachstellen. Ich habe davon noch nie gehört und bin mir nicht sicher was damit gemeint ist.
Ist mit Waagrechtstellen gemeint wo der Graph Waagrecht ist, also die Steigung/erste Ableitung = 0? Die Arten wären dann Maximum oder Minimum? Liege ich da richtig?
Falls das stimmt:
die erste Ableitung ist: [mm] -\bruch{3}{8}x^{2}+x
[/mm]
Ich bekomme heraus dass die = 0, bei x= 0 und [mm] x=\bruch{8}{3}
[/mm]
Weil die Funktion dritten Grades ist und der Koeffizient von [mm] x^{3} [/mm] negative ist, liegt bei 0 ein Minimum und bei [mm] \bruch{8}{3} [/mm] ein Maximim. Ist das richtig so?
Und was sind Flachstellen? ich kenne nur noch Points of Inflection, aber das scheint mir nicht das richtige zu sein.
Jetzt schon Vielen Dank!
Sophie
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:22 Mi 17.05.2006 | Autor: | ardik |
Hallo Sophie,
> Ist mit Waagrechtstellen gemeint wo der Graph Waagrecht ist, also die Steigung/erste Ableitung = 0?
Kann ich auch nur so deuten.
> Die Arten wären dann Maximum oder Minimum? Liege ich da richtig?
Ja. Oder als dritte Möglichkeit auch Sattelpunkt (Saddle Point), also Wendepunkt mit waagerechter Tangente.
> [Berechnung...]. Ist das richtig so?
Bei schnellem "Drüberschauen": Ja.
> Und was sind Flachstellen? ich kenne nur noch Points of Inflection,
> aber das scheint mir nicht das richtige zu sein.
Mir eigentlich schon. Das ist aber kein Wissen, sondern nur Vermutung, logische Schlussfolgerung:
Points of Infleciton sind zu deutsch Wendepunkte, also Punkte, in denen der Graph von Rechtskrümmung in Linkskrümmung (oder natürlich umgekehrt) übergeht. Dort ist der Graph also praktisch nicht gekrümmt. Das könnte man als "flach" ansehen...
Außerdem sind die Wendepunkte die Punkte, die typischerweise in einer Kurvendiskussion nach den Extrempunkten als nächstes interessieren. Es würde also Sinn machen, dass sie hier in einem Atemzug mit den Waagerecht-Stellen genannt sind.
Natürlich kann es auch hier Stellen geben, in denen keine Krümmung vorliegt, die also flach sind, bei denen aber "vorher" und "hinterher" die gleiche Krümmungsrichtung vorliegt, also Punkte, die keine Wendepunkte sind. => Wendestellen sind "Flachstellen", aber nicht alle "Flachstellen" sind Wendestellen.
Hoffe, ich konnte ein wenig weiterhelfen,
schöne Grüße
ardik
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:02 Mi 17.05.2006 | Autor: | Soph.ie |
Also habe ich dass jetzt ricjtig verstanden, das Waagrechtstellen sind wo die erste Ableitung gleich 0 ist. Die verscheidenen Arten sind Maximum, Minimum und Sattelpunkt.
Flachstelle ist wo die 2. Ableitung gleich 0 ist. Ist also ein Sattelpunkt gleichzeitig auch ein Flachpunkt? Die Arten sidn Wendepunkt und was gibt es da noch?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:41 Do 18.05.2006 | Autor: | Sigrid |
Hallo Soph.ie,
> Also habe ich dass jetzt ricjtig verstanden, das
> Waagrechtstellen sind wo die erste Ableitung gleich 0 ist.
> Die verscheidenen Arten sind Maximum, Minimum und
> Sattelpunkt.
>
> Flachstelle ist wo die 2. Ableitung gleich 0 ist. Ist also
> ein Sattelpunkt gleichzeitig auch ein Flachpunkt? Die Arten
> sidn Wendepunkt und was gibt es da noch?
Ein Sattelpunkt ist ein Wendepunkt mit horizontaler Tangente, und damit nach deiner Definition auch ein Flachpunkt.
Um festzustellen, ob eine Flachstelle auch eine Wendestelle ist, musst du noch eine hinreichende Bedingung überprüfen. Ist die 3. Ableitung an einer Flachstelle ungleich 0, dann ist die Flachstelle Wendestelle.
Wenn du benutzen darfst, dass jede ganzrationale Funktion 3. Grades eine Wendestelle hat, kannst du folgern, dass die Nullstelle der 2. Ableitung (also die Flachstelle) auch Wendestelle ist.
Gruß
Sigrid
|
|
|
|