www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenWärmeleitungsgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Wärmeleitungsgleichung
Wärmeleitungsgleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wärmeleitungsgleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:35 So 03.01.2010
Autor: Phorkyas

Aufgabe
Wir betrachten das Anfangswertproblem für die Wärmeleitungsgleichung auf [mm]\IR^n[/mm]
[mm]\bruch{\partial}{\partial t}f(t,x)=\Delta f(t,x) ,t>0[/mm]
[mm]\lim_{t\to 0}f(t,x)=g(x)[/mm] mit [mm]g\in S(\IR^n)[/mm], Schwartzraum

Beweise: Wenn [mm]f(t,x)\in C^\infty (\IR \times \IR^n)[/mm] ist und [mm]f(t_0 ,x)\in S(\IR^n) \forall t_0 >0[/mm]
[mm]\Rightarrow f(t,x)=(K_t \* g)(x)[/mm]

mit [mm]\*[/mm] dem Faltungsoperator und [mm]K_t(x)=\bruch{1}{(4\pi t)^{n/2}}e^{-\bruch{x^2}{4t}}[/mm]

Zum wiederholtenmale Grüße Matheraum.

Ich habe bei obiger Aufgabe bereits gezeigt, das [mm]K_t(x)[/mm] eine Lösung der DGL ist. (Durch nachrechnen der Gleichung [mm]\bruch{\partial}{\partial t}K_t(x)-\Delta K_t(x)=0[/mm].

Momentan hänge ich an der Begründung, das dann auch [mm](K_t\* g)(x)[/mm] die Gleichung löst. Hier fehlt mir allerdings die Idee, ich weiß ja über g nichts weiter, als das es im Schwartzraum liegt.

Wenn ich das gezeigt habe, dann fehlt noch, das die gefundene Lösung eindeutig ist und das [mm](K_t\* g)(x)\in C^\infty (\IR \times \IR^n)[/mm] und [mm](K_t0\* g)(x) \in S(\IR^n) \forall t_0 >0[/mm]. Richtig?

Also zum einen: Wie mache ich das mit der Faltung?
zum andern: Ist die Aufgabe gelöst, wenn ich das mit der Faltung und die beiden Bedingungen aus dem letzten Abschnitt gezeigt habe?

Ich habe die Frage in keinem anderen Forum gestellt.

Für Hinweise und Ideen bin ich wie immer dankbar.

Grüße
Phorkyas

        
Bezug
Wärmeleitungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Di 05.01.2010
Autor: Phorkyas

Grüße nochmals.

Also die Sache mit der Faltung habe ich jetzt hinbekommen.
Ich konnte zeigen, dass
[mm]D^\alpha (f \*g)(x)=((D^\alpha f)\*g)(x) \forall f\in C^\infty[/mm]
Daraus folgt dann sofort, dass [mm](K_t \* g)(x)[/mm] auch eine Lösung der DGL ist.

Jetzt bin ich mir nur nicht sicher, ob ich die Aufgabe gelöst habe, wenn ich die beiden verbliebenen Aussagen gezeigt habe.
Auch die Eindeutigkeit macht mir große Sorgen.
Wie zeige ich sowas?

Wäre für Hilfe sehr dankbar!

Grüße
Phorkyas

Bezug
                
Bezug
Wärmeleitungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:13 Fr 08.01.2010
Autor: rainerS

Hallo!

> Grüße nochmals.
>  
> Also die Sache mit der Faltung habe ich jetzt hinbekommen.
>  Ich konnte zeigen, dass
>  [mm]D^\alpha (f \*g)(x)=((D^\alpha f)\*g)(x) \forall f\in C^\infty[/mm]
>  
> Daraus folgt dann sofort, dass [mm](K_t \* g)(x)[/mm] auch eine
> Lösung der DGL ist.
>  
> Jetzt bin ich mir nur nicht sicher, ob ich die Aufgabe
> gelöst habe, wenn ich die beiden verbliebenen Aussagen
> gezeigt habe.

Was willst du da zeigen? Die Faltung zweier Schwartzfunktionen ist eine Schwartzfunktion.

>  Auch die Eindeutigkeit macht mir große Sorgen.
>  Wie zeige ich sowas?

Die Wärmeleitungsgleichung ist eine lineare PDGL. Da kannst du doch direkt nachrechnen, dass die Differenz zweier Lösungen 0 ist.

Viele Grüße
   Rainer



Bezug
        
Bezug
Wärmeleitungsgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 06.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]