www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Mi 28.10.2009
Autor: HansPeter

Aufgabe
Folgendes Zufallsexperiment wird durchgeführt: Zunächst wird eine Münze
geworfen. Zeigt sie ”Zahl”, so wird der Variablen x der Wert 1/4 zugeordnet. Zeigt
die Münze ”Kopf”, so wird mittels eines Zufallszahlengenerators eine Zufallszahl
in [0, 1] bestimmt und x gleich dieser Zahl gesetzt. Wir wollen den möglichen
Werten von x nun eine Wahrscheinlichkeit P zuordnen.
(a) Warum gibt es keine Abbildung P : [0, 1] → R mit [mm] \integral_{0}^{1} P(x)\, [/mm] dx = 1, die jedem
x seine Wahrscheinlichkeit zuordnet ?

Hallo! Habe hier eine Aufgabe aus Ana 3 aber da ich noch kein Stochastik gehört habe weiß ich einfach nicht weiter. vlt kann mir jemand ja hier helfen?

wäre nett!!!
Danke schonmal!

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Mi 28.10.2009
Autor: felixf

Hallo!

> Folgendes Zufallsexperiment wird durchgeführt: Zunächst
> wird eine Münze
>  geworfen. Zeigt sie ”Zahl”, so wird der Variablen x
> der Wert 1/4 zugeordnet. Zeigt
>  die Münze ”Kopf”, so wird mittels eines
> Zufallszahlengenerators eine Zufallszahl
>  in [0, 1] bestimmt und x gleich dieser Zahl gesetzt. Wir
> wollen den möglichen
>  Werten von x nun eine Wahrscheinlichkeit P zuordnen.
>  (a) Warum gibt es keine Abbildung P : [0, 1] → R mit
> [mm]\integral_{0}^{1} P(x)\,[/mm] dx = 1, die jedem
>  x seine Wahrscheinlichkeit zuordnet ?
>  Hallo! Habe hier eine Aufgabe aus Ana 3 aber da ich noch
> kein Stochastik gehört habe weiß ich einfach nicht
> weiter. vlt kann mir jemand ja hier helfen?

Wenn $P(x)$ jedem $x$ seine Wahrscheinlichkeit zuweist, dann ist $P(x) = P(y)$ fuer alle $x, y [mm] \in [/mm] [0, 1]$ mit $x [mm] \neq [/mm] 1/4 [mm] \neq [/mm] y$. Wenn also [mm] $\int_0^1 [/mm] P(x) [mm] \; [/mm] dx = 1$ gelten soll, wie sieht dann $P(x)$ fuer $x [mm] \neq [/mm] 1/4$ aus?

Nun muss allerdings $P(1/10) + P(1/11)$ ebenfalls eine Wahrscheinlichkeit, also [mm] $\le [/mm] 1$ sein. Bekommst du einen Widerspruch?

LG Felix


Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Mi 28.10.2009
Autor: HansPeter

also müsste P(x) = 1 gelten oder?
--> widerspruch weil P(1/10) + P(1/11) = 2 > 1

okay.
aber wie komm ich nun auf eine Abbildung P : { (a,b) : 0 [mm] \le [/mm] a [mm] \le [/mm] b [mm] \le [/mm] 1} [mm] \subset [/mm] P([0,1]) -> [mm] \IR, [/mm] so dass mit Wahrscheinlichkeiten P((a,b)) das Ereignis x [mm] \in [/mm] (a,b) eintritt.

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Mi 28.10.2009
Autor: felixf

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

> also müsste P(x) = 1 gelten oder?
> --> widerspruch weil P(1/10) + P(1/11) = 2 > 1

Genau.

> okay.
>  aber wie komm ich nun auf eine Abbildung P : { (a,b) : 0
> [mm]\le[/mm] a [mm]\le[/mm] b [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

1} [mm]\subset[/mm] P([0,1]) -> [mm]\IR,[/mm] so dass mit

> Wahrscheinlichkeiten P((a,b)) das Ereignis x [mm]\in[/mm] (a,b)
> eintritt.

Ich verstehe nicht, was du willst. Was genau soll $P$ dem Intervall $(a, b)$ zuordnen? Die Wahrscheinlichkeit, dass die Zufallsvariable $x$ einen Wert in $(a, b)$ annimmt?

Mache doch eine Fallunterscheidung: die Muenze ist Zahl bzw. Kopf.

Mit W'keit [mm] $\frac{1}{2}$ [/mm] nimmt $x$ den Wert $1/4$ an, und mit W'keit [mm] $\frac{1}{2}$ [/mm] nimmt $x$ irgendeinen Wert in $[0, 1]$ an (Gleichverteilung). Es gilt also $P((a, b)) = [mm] \frac{1}{2} 1_{(a,b)}(1/4) [/mm] + [mm] \frac{1}{2} [/mm] (b - a)$: hier ist [mm] $1_{(a, b)}$ [/mm] die Indikatorfunktion zur Menge $(a, b)$.

LG Felix


Bezug
                                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Mi 28.10.2009
Autor: HansPeter

also auf dem übungszettel hab ich leider auch nur die aufgabenstellung die ich oben gepostet habe. aber ich denke dass du das schon richtig verstanden hast. also eine bessere interpretation fällt mir auch nicht ein.
aber wie ist das denn mit der Indikatormenge zu verstehen? wann ist die denn gerade 1?

Bezug
                                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mi 28.10.2009
Autor: felixf

Hallo

>  aber wie ist das denn mit der Indikatormenge zu verstehen?
> wann ist die denn gerade 1?

Siehe z.B. []hier.

LG Felix



Bezug
        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mi 28.10.2009
Autor: Al-Chwarizmi


> Folgendes Zufallsexperiment wird durchgeführt: Zunächst
> wird eine Münze
>  geworfen. Zeigt sie ”Zahl”, so wird der Variablen x
> der Wert 1/4 zugeordnet. Zeigt
>  die Münze ”Kopf”, so wird mittels eines
> Zufallszahlengenerators eine Zufallszahl
>  in [0, 1] bestimmt und x gleich dieser Zahl gesetzt. Wir
> wollen den möglichen
>  Werten von x nun eine Wahrscheinlichkeit P zuordnen.
>  (a) Warum gibt es keine Abbildung P : [0, 1] → R mit
> [mm]\integral_{0}^{1} P(x)\,[/mm] dx = 1, die jedem
>  x seine Wahrscheinlichkeit zuordnet ?


Hallo HansPeter,

die Schwierigkeit ist ja hier die, dass man hier quasi
(siehe aber die Bemerkung ganz unten !) eine Mischung aus
einer diskreten Verteilung und einer Gleichverteilung
hat. Der Wert [mm] x=\frac{1}{4} [/mm] hat die Wahrscheinlichkeit [mm] \frac{1}{2} [/mm] ,
jeder einzelne andere präzise x-Wert hat aber eigentlich
die Wahrscheinlichkeit Null, da die überabzählbar unendlich
vielen Zahlen aus $\ [mm] [\,0\,;1\,]\,\backslash \left\{\frac{1}{4} \right\}$ [/mm] sich in die verbleibende
Wahrscheinlichkeit von [mm] \frac{1}{2} [/mm] teilen müssen.
Definieren wir die kumulierte Wahrscheinlichkeits-
funktion

     [mm] F(x):=\integral_{0}^{x}P(t)dt [/mm]

dann kann man diese ohne weiteres zeichnen. Sie
besitzt an der Stelle [mm] x=\frac{1}{4} [/mm] einen Sprung, wobei
sie von [mm] \frac{1}{8} [/mm] auf [mm] \frac{5}{4} [/mm] springt.
Nun müsste die Verteilungsfunktion P eigentlich die
Ableitungsfunktion von F sein, also  P(x)=F'(x).
Problem ist nur, dass F eben an der Stelle [mm] x=\frac{1}{4} [/mm]
wegen der Unstetigkeit auch nicht ableitbar ist.
Es gelingt also nicht, der Funktion P für [mm] x=\frac{1}{4} [/mm]
einen endlichen, reellen Wert zuzuordnen.

Ich vermute nun sehr, dass diese Aufgabe den
Einstieg zu einer neuen Art von "Funktionen"
sein könnte, welche an gewissen Stellen auch
so etwas wie "unendliche", aber trotzdem präzis
definierte Werte haben können, die sogenannten
Distribitionen.


Bemerkung

Werden im Fall "Kopf" die Werte tatsächlich mit einem
real existierenden Zufallsgenerator erzeugt, so werden
die obigen Überlegungen aber tatsächlich hinfällig.
Der Wertebereich eines Zufallsgenerators ist nicht
unendlich, sondern umfasst beispielsweise bei zehn-
stelligen Zufallszahlen im Intervall $\ [mm] [\,0\,;1\,)$ [/mm]
[mm] 10^{10} [/mm] mögliche Werte. Dann haben wir eine
diskrete Wahrscheinlichkeitsverteilung, aus den
Integralen werden Summen, und eine Ableitungs-
funktion von F ist gar nicht nötig !


LG    Al-Chwarizmi

Bezug
                
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Mi 28.10.2009
Autor: Achtzig

habe die gleiche Aufgabe, wohlmöglich den gleichen Prof :)
ja.. verstehe was du meinst.... kann gut sein dass es sich auf diese Distribution hinauslaufen wird. Bin ja mal gespannt was er in den nächsten Vorlesungen so macht.
aber wie mach ich das denn nun am besten hier bei dieser Übungsaufgabe? weil ich hab ja  noch keine Distributionen zu Verfügung und bis zu Abgabe hab ich auch keine Vorlesung mehr. also muss ich das hier in diesem fall irgendwie anders hinbekommen.?
oder bleibt mir nichts anderes als abzuwarten? :)

Bezug
                        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 Mi 28.10.2009
Autor: Al-Chwarizmi


> habe die gleiche Aufgabe, wohlmöglich den gleichen Prof
> :)
>  ja.. verstehe was du meinst.... kann gut sein dass es sich
> auf diese Distribution hinauslaufen wird. Bin ja mal
> gespannt was er in den nächsten Vorlesungen so macht.
> aber wie mach ich das denn nun am besten hier bei dieser
> Übungsaufgabe? weil ich hab ja  noch keine Distributionen
> zu Verfügung und bis zu Abgabe hab ich auch keine
> Vorlesung mehr. also muss ich das hier in diesem fall
> irgendwie anders hinbekommen.?
> oder bleibt mir nichts anderes als abzuwarten? :)


Ich meine, das Wesentliche in meiner Antwort schon
gesagt zu haben. Die Einführung der kumulierten
Wahrscheinlichkeitsverteilung F ist dabei die Haupt-
idee:

      [mm] F(x_1):=P(0\le x\le x_1) [/mm]

Falls es eine Funktion P(x) mit den verlangten Eigen-
schaften gäbe, müsste sie die Ableitungsfunktion
von F sein. Aber F ist offensichtlich bei [mm] x=\frac{1}{4} [/mm]
nicht differenzierbar.


LG    Al-Chw.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]