www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeit ausrechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit ausrechnen
Wahrscheinlichkeit ausrechnen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit ausrechnen: Abbruch
Status: (Frage) beantwortet Status 
Datum: 13:45 Sa 11.07.2015
Autor: pc_doctor

Aufgabe
In den folgenden Spielen wird ein Experiment solange wiederholt, bis eine bestimmte Abbruchbedingung erfüllt ist. Zur Vereinfachung schreiben wir die Beispielergebnisfolgen als Strings ohne Kommata.

Bestimmen Sie jeweils die Wahrscheinlichkeit, dass ein Spiel genau über  n Runden geht, n fest und n > 0, und geben Sie kurze Begründungen.

(a) Fairer Münzwurf bis zum zweiten Mal Kopf (1) fällt (Bsp.: 00001001)

(b) Fairer Würfel bis zum zweiten Mal 6 fällt (Bsp.: 232245616)

(c) Würfeln bis Augensumme durch 3 teilbar ist (Bsp.: 256122, jetzt gilt (3  |18)

(d) Würfeln mit zwei unabhängigen unterscheidbaren Würfeln bis beide die gleiche Zahl zeigen (Bsp: (1,2)(2,1)(3,6)(5,5))

Hallo,
meine Überlegung zu a):
Die erste 1 (also Kopf) kann irgendwo auftauchen, nicht wichtig , wo.
Die zweite 1 MUSS aber als Letztes fallen, damit "abgebrochen" werden kann.
Daher: P(a) = (n-1) * [mm] 0,5^{n-1} [/mm] * 0,5

Für b) analog:
P(b) = (n-1)* [mm] (\bruch{1}{6})^{n-1} [/mm] * [mm] \bruch{1}{6} [/mm]

Für c) da weiß ich leider nicht, wie das gehen soll. Es wird ja n Mal geworfen, das heißt es gibt wirklich sehr viele Möglichkeiten, damit die AUgensumme durch 3 teilbar ist. Ich kann theoretisch 1 1 1 würfeln, oder 2 2 2 usw. Da bräuchte ich bitte einen Tipp.

Für d) fällt mir auch kein Ansatz ein.

Ich bitte um Kontrolle von a) und b) und für Tipps für c+d.
Vielen Dank im Voraus.


        
Bezug
Wahrscheinlichkeit ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Sa 11.07.2015
Autor: hippias


> In den folgenden Spielen wird ein Experiment solange
> wiederholt, bis eine bestimmte Abbruchbedingung erfüllt
> ist. Zur Vereinfachung schreiben wir die
> Beispielergebnisfolgen als Strings ohne Kommata.
>
> Bestimmen Sie jeweils die Wahrscheinlichkeit, dass ein
> Spiel genau über  n Runden geht, n fest und n > 0, und
> geben Sie kurze Begründungen.
>
> (a) Fairer Münzwurf bis zum zweiten Mal Kopf (1) fällt
> (Bsp.: 00001001)
>
> (b) Fairer Würfel bis zum zweiten Mal 6 fällt (Bsp.:
> 232245616)
>
> (c) Würfeln bis Augensumme durch 3 teilbar ist (Bsp.:
> 256122, jetzt gilt (3  |18)
>
> (d) Würfeln mit zwei unabhängigen unterscheidbaren
> Würfeln bis beide die gleiche Zahl zeigen (Bsp:
> (1,2)(2,1)(3,6)(5,5))
>  Hallo,
>  meine Überlegung zu a):
>  Die erste 1 (also Kopf) kann irgendwo auftauchen, nicht
> wichtig , wo.
>  Die zweite 1 MUSS aber als Letztes fallen, damit
> "abgebrochen" werden kann.
>  Daher: P(a) = (n-1) * [mm]0,5^{n-1}[/mm] * 0,5
>
> Für b) analog:
>  P(b) = (n-1)* [mm](\bruch{1}{6})^{n-1}[/mm] * [mm]\bruch{1}{6}[/mm]
>  

Ich schaetze, Du hast die beiden Aufgaben damit zur Zufriedenheit  aller geloest.

> Für c) da weiß ich leider nicht, wie das gehen soll. Es
> wird ja n Mal geworfen, das heißt es gibt wirklich sehr
> viele Möglichkeiten, damit die AUgensumme durch 3 teilbar
> ist. Ich kann theoretisch 1 1 1 würfeln, oder 2 2 2 usw.
> Da bräuchte ich bitte einen Tipp.

Ich stelle mir ein Baumdiagramm vor, in dem ich als Knoten die Reste der Divison der Augensumme mit $3$ eintrage. Mit diesem Ansatz sollte sich das Problem analog wie a) und b) loesen lassen.

>  
> Für d) fällt mir auch kein Ansatz ein.

Ebenso: Mach es wie bei a) und b); nur, dass Du nicht auf den zweiten Erfolg -hier einen Pasch- sondern auf den ersten wartest.

>  
> Ich bitte um Kontrolle von a) und b) und für Tipps für
> c+d.
>  Vielen Dank im Voraus.
>  


Bezug
                
Bezug
Wahrscheinlichkeit ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Sa 11.07.2015
Autor: pc_doctor

Hallo, danke für die Korrektur.
Um noch mal zurück auf d zu kommen:
Ich habe insgesamt 6 Möglichkeiten einen Pasch zu würfeln.
Also (1,1) (2,2) (3,3) (4,4) (5,5) (6,6)
Da wir aber 2 Würfel haben , hat man insgesamt 36 Paare:
(1,1) (1,2)  (1,3) (1,4) (1,5) (1,6) (2,1)... also insgesamt [mm] \bruch{6}{36} [/mm] = [mm] \bruch{1}{6} [/mm]

Und hier stehe ich jetzt auf dem Schlauch, wie geht es nun weiter?

Bezug
                        
Bezug
Wahrscheinlichkeit ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Sa 11.07.2015
Autor: M.Rex

Hallo

Das ganze ist ja quasi wie die Binomialverteilung zu sehen, du brauchst genau einen Pasch in n anderen Versuchen, dieser muss aber am Ende der Reihe auftreten.

Da die Wahrscheinlichkeit, einen Pasch zu werfen, ja [mm] \frac{6}{36}=\frac{1}{6} [/mm] ist, gilt für die gesuchte Wahrscheinlichkeit

[mm] P=\left(\frac{5}{6}\right)^{n-1}\cdot\frac{1}{6} [/mm]

Den Binomialkoeffizienten, der die Anzahl der Anordnungen des einen Pasches in den anderen Würfen berechnet, brauchst du hier dann nicht, denn es ist eben nur der eine Pfad "n andere Würfe -> 1 Pasch" relevant.

Marius

Bezug
                                
Bezug
Wahrscheinlichkeit ausrechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Sa 11.07.2015
Autor: pc_doctor

Vielen Dank, jetzt habe ich es verstanden. Schönen Tag noch.

Bezug
        
Bezug
Wahrscheinlichkeit ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Sa 11.07.2015
Autor: abakus

Hallo pc_doctor,
die gewürfelte Augenzahl lässt in je zwei der 6 Fälle bei Teilung durch 3 den Rest 0 (mit 3 oder 6), den Rest 1 (mit 1 oder 4) oder den Rest 2 (mit 2 oder 5).
Mit der Wahrscheinlichkeit 1/3 ist das Spiel schon beim ersten Wurf (3 oder 6) zu Ende.
Wenn es NICHT zu Ende ist, kommt im nächsten Wurf mit p=1/3 der richtige Rest, der die Summe durch 3 teilbar macht.
Das Ende nach genau 2 Runden hat also die W.
(2/3)*(1/3)=2/9.
 Das Ende nach genau 3 Runden hat dann die W.
(2/3)* (2/3)* (1/3)=4/27. 
  Das Ende nach genau 4 Runden hat dann die W.
(2/3)* (2/3)*  (2/3)* (1/3)=8/81.  

Gruß´Abakus
 

Bezug
                
Bezug
Wahrscheinlichkeit ausrechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Sa 11.07.2015
Autor: pc_doctor

Hallo abakus, auch dir ein großes Dankeschön für die Hinweise. Damit kann ich weiterarbeiten. Schönen Tag noch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]