Wahrscheinlichkeit bestimmen < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:02 Fr 06.05.2005 | Autor: | Liz_zy |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ein Krebstest ergebe bei erkrankten Personen mit einer Sicherheit von 94% ein positives Ergebnis, bei gesunden mit 96% ein negatives. Im Durchschnitt sei jede 140-ste Person befallen. Wie groß ist die Wahrscheinlichkeit, dass eine Versuchsperson, die ein positives Testergebnis erhält auch wirklich Krebs hat?
Mein Ansatz:
Kann ich daraus automatisch folgern, das dann P(B1|A0) = 0.06 ist
(da ja P(B0) + P(B1) = 1 gilt) ?
Wenn nein, wie komme ich sonst an P(B1|A0)?
Dankeschön
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:11 Fr 06.05.2005 | Autor: | Liz_zy |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ein Krebstest ergebe bei erkrankten Personen mit einer Sicherheit von 94% ein positives Ergebnis, bei gesunden mit 96% ein negatives. Im Durchschnitt sei jede 140-ste Person befallen. Wie groß ist die Wahrscheinlichkeit, dass eine Versuchsperson, die ein positives Testergebnis erhält auch wirklich Krebs hat?
b)
Wie groß ist bei negativem Ausgang die Wahrscheinlichkeit, trotzdem
krank zu sein?
Hinweis: Ein geeigneter Grundraum ist omega={0,1}²,wobei die erste
Komp. den Status (krank=0, gesund=1) und die zweite das Testergebnis(positiv, negativ) kennzeichne. man definiere wieder Ao 'person krank', A1 'Person gesund', Bo 'testergebnis positiv' B1 'testergebnis negativ'. Mengen sollten explizit aufgeschrieben werden
Mein Ansatz zu a)
Kann ich daraus automatisch folgern, das dann P(B1|A0) = 0.06 ist
(da ja P(B0) + P(B1) = 1 gilt) ?
Wenn nein, wie komme ich sonst an P(B1|A0)?
Dankeschön
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:28 Fr 06.05.2005 | Autor: | rand |
Hallo,
zu b.)
P(Test negativ)=1/140*0,06+139/140*0,96
P(krank trotz neg. test)=(1/140)/P(test neg)=7,49*10^-3
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:19 Fr 06.05.2005 | Autor: | rand |
Hallo,
die Wahrscheinlichkeit dass der test positiv ist:
P(Tpos)=1/140*0,94+139/140*0,04=0,04642
P(das man krank ist, bei pos. test)=(1/140)/0,04642=0,1538
grüße
rand
|
|
|
|