www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeitsmaß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Wahrscheinlichkeitsmaß
Wahrscheinlichkeitsmaß < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsmaß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Mi 06.04.2011
Autor: Foxy333

Hallo
Die Sigma-Algebra [mm] \mathcal{A}:= {\emptyset , \{a\},\{d\},\{b,c\},\{a,d\},\{a,b,c\},\{b,c,d\},omega \} [/mm] ist gegeben.
Nun soll man ein Wahrscheinlichkeitsmaß [mm] P:\mathcal{A} \to [/mm] [0,1] vollständig angeben, sodass [mm] P(\{a,d\})=\bruch{1}{8} [/mm] und [mm] P(\{b,c,d\})=\bruch{7}{8}. [/mm]
Nun weiß ich nicht genau, wie man ein Wahrscheinlichkeitsmaß überhaupt definiert.
Mir ist nur das einfache Laplacsche Wahrscheinlichkeitsmaß bekannt.

        
Bezug
Wahrscheinlichkeitsmaß: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Mi 06.04.2011
Autor: Al-Chwarizmi


> Hallo
>  Die Sigma-Algebra [mm]\mathcal{A}:= {\emptyset , \{a\},\{d\},\{b,c\},\{a,d\},\{a,b,c\},\{b,c,d\},omega \}[/mm]
> ist gegeben.
>  Nun soll man ein Wahrscheinlichkeitsmaß [mm]P:\mathcal{A} \to\ [0,1][/mm]
>  vollständig angeben, sodass [mm]P(\{a,d\})=\bruch{1}{8}[/mm]
> und [mm]P(\{b,c,d\})=\bruch{7}{8}.[/mm]
>  Nun weiß ich nicht genau, wie man ein
> Wahrscheinlichkeitsmaß überhaupt definiert.
>  Mir ist nur das einfache Laplacsche
> Wahrscheinlichkeitsmaß bekannt.


Hallo Foxy333,

ich würde die Menge   [mm] $\Omega\ [/mm] =\ [mm] \{a,b,c,d\}$ [/mm]  sowie ihre für
die Sigma-Algebra relevanten Teilmengen in einem
Mengendiagramm darstellen. Ordne diesen dann
Wahrscheinlichkeiten zu, zuerst die vorgegebenen
und dann die übrigen so, dass das Ganze den
Regeln für ein Wahrscheinlichkeitsmaß entspricht.
Die sind dir ja bestimmt bekannt.

LG    Al-Chw.


Bezug
                
Bezug
Wahrscheinlichkeitsmaß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Mi 06.04.2011
Autor: Foxy333

Hallo
danke für deine Schnell antwort.
Also ich hab das nach deinem Tipp folgendermaßen gemacht:
[mm] P(\{a,d\})=\bruch{1}{8} [/mm]
Das Gegenereignis wäre: [mm] P(\{b,c\})=\bruch{7}{8} [/mm]
Außerdem gilt:
[mm] P(\{b,c,d\})=\bruch{7}{8} [/mm] und [mm] P(\{a\})=\bruch{1}{8} [/mm]
Nun darf man doch davon ausgehen, dass die Elementarereignisse disjunkt sind oder?
[mm] P(\{a,d\})= P(\{a\})+ P(\{d\})=\bruch{1}{8}, [/mm] sodass [mm] P(\{d\})=0 [/mm] folgt.

Damit macht man solang weiter, bis man jedem Ereignis aus de sigma-Algebra einer Wahrscheinlichkeit zugeordnet hat.
Reicht das aus für diese Aufgabenstellung,einfach jeder Teilmenge aus der sigma-Algebra einer Wahrscheinlichkeit zuzuordnen?

Noch eine kleine Frage: Wenn man ein Omega gegebe hat und dazu zwei Ereignisse A und B. Mit dem Laplacschen Wahrscheinlichkeitsmaß sind diese Ereignisse nicht stochastisch unabhängig.
Nun soll man ein anderes Wahrscheinlichkeitsmaß angeben, sodass die A und B stochastisch unabhängig sind.
Wie löst man solche Aufgaben?

Bezug
                        
Bezug
Wahrscheinlichkeitsmaß: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Do 07.04.2011
Autor: fred97


> Hallo
>  danke für deine Schnell antwort.
>  Also ich hab das nach deinem Tipp folgendermaßen
> gemacht:
>  [mm]P(\{a,d\})=\bruch{1}{8}[/mm]
>  Das Gegenereignis wäre: [mm]P(\{b,c\})=\bruch{7}{8}[/mm]
>  Außerdem gilt:
>  [mm]P(\{b,c,d\})=\bruch{7}{8}[/mm] und [mm]P(\{a\})=\bruch{1}{8}[/mm]
>  Nun darf man doch davon ausgehen, dass die
> Elementarereignisse disjunkt sind oder?

Ja


>  [mm]P(\{a,d\})= P(\{a\})+ P(\{d\})=\bruch{1}{8},[/mm] sodass
> [mm]P(\{d\})=0[/mm] folgt.
>  
> Damit macht man solang weiter, bis man jedem Ereignis aus
> de sigma-Algebra einer Wahrscheinlichkeit zugeordnet hat.


Genau


>  Reicht das aus für diese Aufgabenstellung,einfach jeder
> Teilmenge aus der sigma-Algebra einer Wahrscheinlichkeit
> zuzuordnen?

Ja



FRED

>  
> Noch eine kleine Frage: Wenn man ein Omega gegebe hat und
> dazu zwei Ereignisse A und B. Mit dem Laplacschen
> Wahrscheinlichkeitsmaß sind diese Ereignisse nicht
> stochastisch unabhängig.
> Nun soll man ein anderes Wahrscheinlichkeitsmaß angeben,
> sodass die A und B stochastisch unabhängig sind.
>  Wie löst man solche Aufgaben?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]