www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeitsrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Do 12.09.2013
Autor: Zwinkerlippe

Aufgabe
Der Anteil defekter Erzeugnisse in drei unabhängig voneinander produzierender Betriebe [mm] B_1, B_2, B_3 [/mm] eines Konzerns beträgt

[mm] P(B_1)=2Prozent=0,02 [/mm]

[mm] P(B_2)=1Prozent=0,01 [/mm]

[mm] P(B_3)=0,5Prozent=0,005 [/mm]

In einer Versandpackung des Konzerns befinden sich drei Erzeugnisse, aus jedem Betrieb genau eines. Wie groß ist die Wahrscheinlichkeit, dass sich in einer Verpackung

a) kein defektes
b) genau ein defektes Erzeugnis befindet

Ich wieder mit einem herzlichen Hallo

a) 0,98*0,99*0,995

b) 1-0,02*0,01*0,005

wie sehen meine Ansätze aus? zwinkerlippe

        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Do 12.09.2013
Autor: MathePower

Hallo Zwinkerlippe,


> Der Anteil defekter Erzeugnisse in drei unabhängig
> voneinander produzierender Betriebe [mm]B_1, B_2, B_3[/mm] eines
> Konzerns beträgt
>  
> [mm]P(B_1)=2Prozent=0,02[/mm]
>  
> [mm]P(B_2)=1Prozent=0,01[/mm]
>  
> [mm]P(B_3)=0,5Prozent=0,005[/mm]
>  
> In einer Versandpackung des Konzerns befinden sich drei
> Erzeugnisse, aus jedem Betrieb genau eines. Wie groß ist
> die Wahrscheinlichkeit, dass sich in einer Verpackung
>  
> a) kein defektes
>  b) genau ein defektes Erzeugnis befindet
>  Ich wieder mit einem herzlichen Hallo
>  
> a) 0,98*0,99*0,995
>  

  
[ok]


> b) 1-0,02*0,01*0,005
>  


Das ist nicht ok.

Zeichne Dir das als Baum auf.


> wie sehen meine Ansätze aus? zwinkerlippe



Gruss
MathePower

Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Do 12.09.2013
Autor: Zwinkerlippe

Danke wieder, noch zu b), ich notiere mir lieber die Ereignisse als den Baum, zu betrachten sind wohl die Ereignisse

A: Betrieb 1 "ganz", Betrieb 2 "ganz", Betrieb 3 "defekt"

B: Betrieb 1 "ganz", Betrieb 2 "defekt", Betrieb 3 "ganz"

C: Betrieb 1 "defekt", Betrieb 2 "ganz", Betrieb 3 "ganz"

für A: 0,98*0,99*0,005

für B: 0,98*0,01*0,995

für C: 0,02*0,99*0,995

dann die drei Produkte addieren, bin ich jetzt auf einem richtigen Lösungsweg? zwinkerlippe


Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Do 12.09.2013
Autor: MathePower

Hallo Zwinkerlippe.


> Danke wieder, noch zu b), ich notiere mir lieber die
> Ereignisse als den Baum, zu betrachten sind wohl die
> Ereignisse
>  
> A: Betrieb 1 "ganz", Betrieb 2 "ganz", Betrieb 3 "defekt"
>  
> B: Betrieb 1 "ganz", Betrieb 2 "defekt", Betrieb 3 "ganz"
>  
> C: Betrieb 1 "defekt", Betrieb 2 "ganz", Betrieb 3 "ganz"
>  
> für A: 0,98*0,99*0,005
>  
> für B: 0,98*0,01*0,995
>  
> für C: 0,02*0,99*0,995
>  
> dann die drei Produkte addieren, bin ich jetzt auf einem
> richtigen Lösungsweg? zwinkerlippe

>


Ja.


Gruss
MathePower    

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]