www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeitstheorie
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Wahrscheinlichkeitstheorie
Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitstheorie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 So 28.04.2013
Autor: user0009

Aufgabe
Eine Zufallsvariable X ist definiert durch die Verteilungsfunktion

[mm] F_{X}(x)= \begin{cases} 0, & \mbox{für } x<0 \\ K , & \mbox{für } 0 \le x < 1 \\ K+1/2(x-1) , & \mbox{für }1 \le x < 2 \\ K+1/2 , & \mbox{für }2 \le x < 3 \\ 1 , & \mbox{für }x \ge 3 \end{cases} [/mm]

(a) Zeiche [mm] F_{X}(x) [/mm] und die Dichtefunktion [mm] f_{X}(x)! [/mm]
(b) Finde den Bereich in dem K möglich ist.
(c) Was ist die Wahrscheinlichkeit für 0 [mm] \le [/mm] X < 1?
(d) Was ist die Wahrscheinlichkeit für 0 [mm] \le [/mm] X < 2, als Funktion von K?
(e) Was ist die Wahrscheinlichkeit für X [mm] \ge [/mm] 3?

Nun ich habe zu allen eine Frage, da ich mich mit der Wahrscheinlichkeitsrechnung nicht so gut auskenne, jedoch habe ich versucht es zu lösen.

(a) Für [mm] F_{X}(x) [/mm] hätte ich die Werte einfach normal eingezeichnet in ein Diagramm. Auf der x-Achse die x-Werte und auf der Y-Achse die K Werte.
Für die Dichtefunktion hätte ich die K Werte differenziert und in ein Diagramm eingezeichnet.

[mm] f_{X}(x)= \begin{cases} 0, & \mbox{für } x<0 \\ 1 , & \mbox{für } 0 \le x < 1 \\1 , & \mbox{für }1 \le x < 2 \\1 , & \mbox{für }2 \le x < 3 \\ 1 , & \mbox{für }x \ge 3 \end{cases} [/mm]

(b) Bei den Möglichen Werte weiß ich nicht wie ich diese Berechnen soll.
(c) P(0 < X [mm] \le [/mm] 1) = F(1)-F(0) = K- 0 = K%
(d) P(0 [mm] \le [/mm] X <2) = F(2)-F(0) = K+1/2(x-1)-0 = k+0,5%
(e) P(X [mm] \ge [/mm] 2) = F(2)= K+1/2%

Ich habe nun leider keine Ahnung ob ich das Richtig gerechnet habe oder ob ich einige grundsätzlich Falsch angegangen bin. Bin für jeden Tipp und Hilfe dankbar.

        
Bezug
Wahrscheinlichkeitstheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 So 28.04.2013
Autor: abakus


> Eine Zufallsvariable X ist definiert durch die
> Verteilungsfunktion

>

> [mm]F_{X}(x)= \begin{cases} 0, & \mbox{für } x<0 \\ K , & \mbox{für } 0 \le x < 1 \\ K 1/2(x-1) , & \mbox{für }1 \le x < 2 \\ K 1/2 , & \mbox{für }2 \le x < 3 \\ 1 , & \mbox{für }x \ge 3 \end{cases}[/mm]

>

> (a) Zeiche [mm]F_{X}(x)[/mm] und die Dichtefunktion [mm]f_{X}(x)![/mm]
> (b) Finde den Bereich in dem K möglich ist.
> (c) Was ist die Wahrscheinlichkeit für 0 [mm]\le[/mm] X < 1?
> (d) Was ist die Wahrscheinlichkeit für 0 [mm]\le[/mm] X < 2, als
> Funktion von K?
> (e) Was ist die Wahrscheinlichkeit für X [mm]\ge[/mm] 3?
> Nun ich habe zu allen eine Frage, da ich mich mit der
> Wahrscheinlichkeitsrechnung nicht so gut auskenne, jedoch
> habe ich versucht es zu lösen.

>

> (a) Für [mm]F_{X}(x)[/mm] hätte ich die Werte einfach normal
> eingezeichnet in ein Diagramm. Auf der x-Achse die x-Werte
> und auf der Y-Achse die K Werte.
> Für die Dichtefunktion hätte ich die K Werte
> differenziert und in ein Diagramm eingezeichnet.

>

> [mm]f_{X}(x)= \begin{cases} 0, & \mbox{für } x<0 \\ 1 , & \mbox{für } 0 \le x < 1 \\1 , & \mbox{für }1 \le x < 2 \\1 , & \mbox{für }2 \le x < 3 \\ 1 , & \mbox{für }x \ge 3 \end{cases}[/mm]

Hallo,
diese Ableitungen sind fast alle falsch. Das einzige Intervall mit dem Ableitungswert 1 ist das Intervall von 2 bis 3.

Das wesentliche passiert aber nicht IN den Intervallen, sondern an den Intervallgrenzen.
Gruß Abakus 
>

> (b) Bei den Möglichen Werte weiß ich nicht wie ich diese
> Berechnen soll.
> (c) P(0 < X [mm]\le[/mm] 1) = F(1)-F(0) = K- 0 = K%
> (d) P(0 [mm]\le[/mm] X <2) = F(2)-F(0) = K+1/2(x-1)-0 = k+0,5%
> (e) P(X [mm]\ge[/mm] 2) = F(2)= K+1/2%

>

> Ich habe nun leider keine Ahnung ob ich das Richtig
> gerechnet habe oder ob ich einige grundsätzlich Falsch
> angegangen bin. Bin für jeden Tipp und Hilfe dankbar.

Bezug
                
Bezug
Wahrscheinlichkeitstheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:00 So 28.04.2013
Autor: user0009

Ich habe gerade gesehen, dass ich einen Angabefehler gemacht habe. zwischen K's gehört ein + rein, dann stimmen die Ableitungen wieder. Sorry ist mein Fehler. Wie schaut es mit den anderen Antworten aus? Sind diese richtig?

Bezug
                        
Bezug
Wahrscheinlichkeitstheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 So 28.04.2013
Autor: abakus


> Ich habe gerade gesehen, dass ich einen Angabefehler
> gemacht habe. zwischen K's gehört ein + rein, dann stimmen
> die Ableitungen wieder.

Nein. Die Ableitung einer Konstante (und jeder Term ohne x ist eine Konstante) ist immer Null.

> Sorry ist mein Fehler. Wie schaut
> es mit den anderen Antworten aus? Sind diese richtig?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]