www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisWalter: gewöhnl.DGl
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Walter: gewöhnl.DGl
Walter: gewöhnl.DGl < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Walter: gewöhnl.DGl: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:18 Di 25.01.2005
Autor: psjan

Hallo,
im Walter, Gewöhnliche Differentialgleichungen, 7. Aufl. auf Seite 7 gibt es eine Aussage / Aufgabe, die ich wie folgt zusammenfassen würde:

Gegeben ist die DGl:
$ s''(t)=- [mm] \gamma [/mm] M [mm] \frac{1}{s^2(t)} [/mm] $
Die Bewegung in einem Gravitationsfeld (oder so ähnlich). Es wurde dann eine mögliche Lösung [mm] $\bar [/mm] s(t)$ gefunden:
$ [mm] \bar s(t)=at^{2/3} [/mm] $
wobei $a=(9 [mm] \gamma [/mm] M [mm] /2)^{1/3}$. [/mm] Als [mm] $v_0$ [/mm] ergab sich für den Abschuss auf der Erdoberfläche der bekannte Wert der Fluchtgeschwindigkeit, die man braucht, um nicht mehr auf die Erde zurückzufallen (-> Problem). Außerdem konnte ich noch nachweisen, dass für eine allgemeine Lösung $s$ auf [mm] $[t_0, t_1]$ [/mm] mit [mm] $s(t_0)=\bar s(t_0)$ [/mm] und $0< [mm] v(t_0) [/mm] < [mm] \bar v(t_0)$ [/mm] auf dem offenen Intervall immer [mm] $s<\bar [/mm] s$ und $v < [mm] \bar [/mm] v$ sein muss. Hier darf [mm] $t_1=\infty$ [/mm] sein.

Jetzt kommt mein Problem: Warum hat $s$ eine Rückkehrbahn?
Man weiss ja schließlich (fast) nichts über $s$, außer der definierenden DGl und den Hinweisen, die auch Walter angibt: $s''<0$ und [mm] $\bar [/mm] v(t) [mm] \to [/mm] 0$. $s$ muss ja nicht einmal die Form von [mm] $\bar [/mm] s$ haben. Irgendwie muss [mm] $\bar [/mm] v(t) [mm] \to [/mm] 0$ in Verbindung mit $v< [mm] \bar [/mm] v$ was mit der Lösung zu tun haben.

Anschaulich, denke ich, ist das Problem nicht so extrem, aber wie kommt man formal drauf?


Bin dankbar für jede Anregung ...
psjan


        
Bezug
Walter: gewöhnl.DGl: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Di 25.01.2005
Autor: moudi

Hallo psjan

Das Beispiel steht sozusagen vor der allgemeinen Theorie, deshalb ist die Lösung ein bisschen knapp.
Allgemein, sollte die allgemeine Lösung von

[mm] $s''(t)=\frac{-k}{s^2(t)}$ [/mm]

zwei freie Parameter enthalten, die man z.B. mit den Anfangsbedingungen $s(0)=R$ und [mm] $s'(0)=v_0$ [/mm] bestimmen kann.

Ich weiss nicht wie gut du schon DGL lösen kannst. Ich würde es so machen:
Es ist eine Differentialgleichung vom Typ $y''=f(y)$ (Kapitel II Abschnitt 11 (in der dritten Auflage)).

Durch Multiplikation mit $2y'$ kann man nachher einmal Integrieren.

Also [mm] $2s's''=\frac{-2ks'}{s^2}$. [/mm]   Integrieren ergibt (Kettenregel!)
[mm] $(s')^2=\frac{2k}{s}+C_1$ [/mm]   und daraus
[mm] $s'=\sqrt{\frac{2k}{s}+C_1}$ [/mm]   Das ist jetzt eine separierbare DGL. Nochmals umformen
[mm] $\frac{s'}{\sqrt{\frac{2k}{s}+C_1}}=1$ [/mm]  Man kann jetzt nochmals integrieren.

Man bekommt eine ziemlich hässliche Lösung, falls [mm] $C_1\not=0$. [/mm]

Aber im Fall [mm] $C_1=0$ [/mm] erhält man
[mm] $\frac{2}{3\sqrt{2k}}s^{3/2}=t+C_2$ [/mm] und nach s aufgelöst

[mm] $s=\frac{\sqrt[3]{36k}}{2}\cdot (t+C_2)^{2/3}$ [/mm]

Diese Lösung entspricht dem Lösungsansatz im Buch. Es bleibt allerdings die Frage, wieso [mm] $C_1=0$ [/mm] ist.

mfG Moudi





Bezug
                
Bezug
Walter: gewöhnl.DGl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Di 25.01.2005
Autor: OBdA-trivial

[mm] C_{1} = 0 [/mm]  wegen [mm] \limes_{t\rightarrow\infty} s'(t) = 0 [/mm]  denn dies ist die Minimalbedingung damit dein Objekt nicht wieder auf die Erde zurückfällt!
Gruß Ralf

Bezug
                        
Bezug
Walter: gewöhnl.DGl: Danke für die Erläuterung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Di 25.01.2005
Autor: moudi


>  [mm]C_{1} = 0[/mm]  wegen [mm]\limes_{t\rightarrow\infty} s'(t) = 0[/mm]  
> denn dies ist die Minimalbedingung damit dein Objekt nicht
> wieder auf die Erde zurückfällt!

Hallo Ralf

Danke für den Hinweis.
Moudi

>  Gruß Ralf
>  

Bezug
                        
Bezug
Walter: gewöhnl.DGl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:48 Mi 26.01.2005
Autor: psjan

Hallo,
Danke erst mal für Deine (Eure) schnelle Antwort. Aus ihr schließe ich mal, dass die DGl nur Lösungen von der o.g. Form hat (was zumindest mal die allg. Form der Lösung klärt).
Allerdings ist mir noch nicht klar, wie ich mit den bis dorthin (Seite 7) bekannten Mitteln die Sache mit der Rückkehrbahn erklären kann.
Wie schon erwähnt hat das ja mit den anderen Aussagen geklappt. Dh. z.B., dass $v(t)< [mm] \bar [/mm] v(t)$ auf [mm] $(t_0,t_1)$, [/mm] konnte ich ohne Kenntnis der konkreten Form von $s$ zeigen. Dazu habe ich, wie Walter es vorgeschlagen hat, die Differenzfunktion gebildet und eine Differentialgleichung für sie "gefunden". Mit ihrer Hilfe konnte ich die Beziehung der Geschwindigkeiten sehen. (Hab gerade nicht so viel Zeit, vielleicht reiche ich den Gedankengang mal nach).
Nur eben mit dieser Rückkehrbahn hakt's bei mir aus (auch scheint Ralfs Mitteilung damit in Verbindung zu stehen - jedoch wieder mit "späteren" Werkzeugen.)

psjan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]