www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenWas genau passiert hier?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Was genau passiert hier?
Was genau passiert hier? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Was genau passiert hier?: Zusammenhang zwischen Matrizen
Status: (Frage) beantwortet Status 
Datum: 23:50 Do 06.10.2011
Autor: Drno

Aufgabe
Die Matrizen sind alle Rotationsmatrizen (3x3):
Gegeben R (beliebige Rotation)
Gesucht [mm] R_z [/mm] (Rotationsmatix um z-Achse)
Unbekannt: [mm] R_a [/mm] (beliebige Rotation)

R = [mm] R_a*R_z *R_a' [/mm]

Nun nehme ich die den Eigenvektor zum Eigenwert 1 der Matrix R, [mm] R_{a3} [/mm] (ich kann zeigen, dass dies auch die dritte Spalte von [mm] R_a [/mm] ist). Zu dieser Matrix baue ich mir eine Rotationsmatrix der Form

[mm] R_b [/mm] = [mm] [\vec{x}, \vec{y}, R_{a3}], [/mm]

wobei [mm] \vec{x} [/mm] und [mm] \vec{y} [/mm] zwei beliebige Einheitsvektoren die mit [mm] R_{a3} [/mm] ein Rechtssystem bilden, sind.

Nun kommt:

[mm] R_z [/mm] = [mm] R_b'*R*R_b [/mm]



Meine Frage ist recht einfach:
Warum ist das so?

Ich bin eher durch Zufall auf diesen Zusammenhang gestoßen und würde gerne wissen, warum das so ist. Warum kann ich mein [mm] R_z [/mm] aus der Matrix R extrahieren ohne Wissen über die From von [mm] R_a [/mm] zu haben.

Ist es dann sogar möglich die Matrix [mm] R_a [/mm] zu bestimmen?
Schließlich kenne ich bereits die dritte Spalte [mm] R_{a3}. [/mm]

Für Hilfe wäre ich wirklich dankbar.

Wer es in Matlab ausprobieren will:
c1 = cos(1); s1 = sin(1);
c2 = cos(1.2); s2 = sin(1.2);
c3 = cos(0.3); s3 = sin(0.3);
R1 = [c1 -s1 0; s1 c1 0; 0 0 1];
R2 = [c2 0 s2; 0 1 0; -s2 0 c2];
R3 = [1 0 0; 0 c3 -s3; 0 s3 c3];
Ra = R1*R2*R3;
c1 = cos(0.5); s1 = sin(0.5);
Rz = [c1 s1 0; -s1 c1 0; 0 0 1]
R = Ra*Rz*Ra';
e = Ra(:,3);
ex = [1,1,-(e(1)+e(2))/e(3)]';
ex = ex/norm(ex);
Rb = [cross(ex, e), ex, e];
Rb'*R*Rb


        
Bezug
Was genau passiert hier?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Sa 08.10.2011
Autor: ullim

Hi,

die Matrix [mm] R_a [/mm] ist ja definiert als

[mm] R_a=R_1*R_2*R_3 [/mm]

die Matrix R durch

[mm] R=R_a^T*R_z*R_a [/mm]

und die Matrix [mm] R_b [/mm] durch

[mm] R_b=\pmat{ e_x \times e & e_x & e } [/mm] mit [mm] e_x*e=0 [/mm]

Bezeichnet man die Spalten der Matrix [mm] R_a [/mm] mit x, y und e dann gilt [mm] R_a=\pmat{ x & y & e } [/mm] und x, y und e stehen senkrecht aufeinander da [mm] R_a [/mm] orthogonal ist.

Wegen [mm] R_a^T*R_b=\pmat{ x^T*(e_x \times e) & x^T*e_x & x^T*e \\ y^T*(e_x \times e) & y^T*e_x & y^T*e \\ e^T*(e_x \times e) & e^T*e_x & e^T*e } [/mm] sowie

[mm] e^T*(e_x \times [/mm] e)=0
[mm] e^T*e_x=0 [/mm]
[mm] e^T*e=1 [/mm]
[mm] x^T*e=0 [/mm]
[mm] y^T*e=0 [/mm]

und der Tatsache das [mm] R_a^T*R_b [/mm] eine orthogonale Matrix ist, ist [mm] R_a^T*R_b [/mm] eine Drehung um die z-Achse und ich bezeichne sie mit [mm] S_z, [/mm] also gilt

[mm] R_a^T*R_b=S_z [/mm]

Jetzt kann man alles einsetzen und erhält für [mm] R_b^T*R*R_b^T [/mm] den Ausdruck

[mm] R_b^T*R*R_b^T=S_z^T*R_a^T*R*R_a*S_z=S_z^T*R_a^T*R_a*R_z*R_a^T*R_a*S_z=S_z^T*R_z*S_z=R_z [/mm]





Bezug
                
Bezug
Was genau passiert hier?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 So 09.10.2011
Autor: Drno

Vielen Dank, das hilft mir wirklich weiter.
Man kann jetzt auch gut sehen, dass man das Ra nicht eindeutig bestimmen kann. Es wird immer eine Rotation übrig bleiben.

Bezug
                        
Bezug
Was genau passiert hier?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 So 09.10.2011
Autor: ullim

Hi,

das hängt wahrscheinlich damit zusammen, das die Vektoren, die senkrecht zu [mm] \overrightarrow{e} [/mm] gewählt wurden [mm] e_x [/mm] und [mm] \left(e_x \times e\right) [/mm] nicht eindeutig sind, sondern in der Ebene senkrecht zu [mm] \overrightarrow{e} [/mm] noch gedreht werden können.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]