Was ist die Basis? < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich hab ein ganz schlimmes Verständnisproblem bezgl der Basis?
Es ist doch definitionsgemäß die Menge aller linear abhängiger Vektoren im Nullraum, oder?
Und wenn das stimmt, wie berechne ich denn "eine Basis"? So steht es ja in den Aufgabenstellungen oft.
Was ist der Unterschied zw der Basis des Nullraums/Kerns und des "Bildes"?
Danke, danke, danke!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:10 Di 18.11.2008 | Autor: | leduart |
Hallo englein
Da geht was grundsaetzlich schief in deiner Vorstellung:
erstmal braucht man nen Vektorraum V ich sag mal er hat die Dimension n, d.h. die Maximalanzahl linear unabhaengiger Vektoren ist n.
jetzt kannst du eine Basis waehlen, indem du beliebige n linear unabh. Vektoren aus diesem V nimmst. Dann kannst du jeden Vektor [mm] v\in [/mm] V als Linearkombination dieser n "Basisvektoren" darstellen.
wenn du etwa ne Basis [mm] (v_1,v_2,...,v_n) [/mm] hast dann ist z. Bsp. auch [mm] (v_1, v_1+v_2,v_3,..,v_n) [/mm] eine (andere) Basis.
Jetzt zu deinem Nullraum oder Kern und Bildraum.
Dazu brauchst du erstmal ne Abbildung von V auf einen anderen Vektorraum U, sei die Abbildung f also f(v)=u mit [mm] v\inV [/mm] und [mm] u\in [/mm] U.
alle Vektoren aus V die auf den 0-Vektor in U abgebildet werden bilden den Untervektorraum von V und der heisst Kern von f. also die Menge der v mit f(v)=0 liegen im Kern.
jetzt schaut man sich diesen Kern [mm] K\subseteq [/mm] V an, bestimmt seine Dimension, die sei [mm] m\le [/mm] n. jetzt nimmt man also wieder m unabhaengige Vektoren aus K und bildet daraus ne Basis des Unterraums K.
Das Bild von V liegt in U, ich stelle die Dimension des Bildes fest , die ist laut dimensionssatz jetzt n-m und suche also n-m linear unabh. Vektoren in f(V). das ist dann eine basis des Bildes. und ich kann jeden Vektor des Bildes aus ihnen linear kombinieren.
etwas klarer?
Gruss leduart
|
|
|
|