www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeWas ist die Basis?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Was ist die Basis?
Was ist die Basis? < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Was ist die Basis?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Di 18.11.2008
Autor: Englein89

Hallo,

ich hab ein ganz schlimmes Verständnisproblem bezgl der Basis?

Es ist doch definitionsgemäß die Menge aller linear abhängiger Vektoren im Nullraum, oder?

Und wenn das stimmt, wie berechne ich denn "eine Basis"? So steht es ja in den Aufgabenstellungen oft.

Was ist der Unterschied zw der Basis des Nullraums/Kerns und des "Bildes"?

Danke, danke, danke!

        
Bezug
Was ist die Basis?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Di 18.11.2008
Autor: leduart

Hallo englein
Da geht was grundsaetzlich schief in deiner Vorstellung:
erstmal braucht man nen Vektorraum V ich sag mal er hat die Dimension n, d.h. die Maximalanzahl linear unabhaengiger Vektoren ist n.
jetzt kannst du eine Basis waehlen, indem du beliebige n linear unabh. Vektoren aus diesem V nimmst. Dann kannst du jeden Vektor [mm] v\in [/mm] V als Linearkombination dieser n "Basisvektoren" darstellen.
wenn du etwa ne Basis [mm] (v_1,v_2,...,v_n) [/mm] hast dann ist z. Bsp. auch [mm] (v_1, v_1+v_2,v_3,..,v_n) [/mm] eine (andere) Basis.

Jetzt zu deinem Nullraum oder Kern und Bildraum.
Dazu brauchst du erstmal ne Abbildung von V auf einen anderen Vektorraum U, sei die Abbildung f also f(v)=u mit [mm] v\inV [/mm] und [mm] u\in [/mm] U.
alle Vektoren aus V die auf den 0-Vektor in U abgebildet werden bilden den Untervektorraum von V und der heisst Kern von f. also die Menge der v mit f(v)=0 liegen im Kern.
jetzt schaut man sich diesen Kern  [mm] K\subseteq [/mm] V an, bestimmt seine Dimension, die sei [mm] m\le [/mm] n. jetzt nimmt man also wieder m unabhaengige Vektoren aus K und bildet daraus ne Basis des Unterraums K.
Das Bild von V liegt in U, ich stelle die Dimension des Bildes fest , die ist laut dimensionssatz jetzt n-m und suche also n-m linear unabh. Vektoren in f(V). das ist dann eine basis des Bildes. und ich kann jeden Vektor des Bildes aus ihnen linear kombinieren.
etwas klarer?
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]