www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenWdh. Symmetrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Wdh. Symmetrie
Wdh. Symmetrie < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wdh. Symmetrie: Idee
Status: (Frage) beantwortet Status 
Datum: 19:41 Mi 10.11.2010
Autor: Mary2505

Hallo!

Wie war das nochmal mit der Symmetrie einer Funktion?
- achsensymmetrisch zur y-Achse (gerade Exponenten)
- punktsymmetrisch zum Ursprung (ungerade Exponenten)

Wenn ich mich richtig erinnere, spielt nur der jeweils größte Exponent die entscheidende Rolle?? Wenn ja warum oder verwechsle ich da was?
Bsp.
[mm] f(x)=x^3+x^2 [/mm] also punktsym. ???

lg
Mary

Ich habe diese Frage auf keinem anderen Forum gestellt.

        
Bezug
Wdh. Symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Mi 10.11.2010
Autor: Disap

Hallo Mary!

> Wie war das nochmal mit der Symmetrie einer Funktion?
>  - achsensymmetrisch zur y-Achse (gerade Exponenten)
>  - punktsymmetrisch zum Ursprung (ungerade Exponenten)

Ja, so ist es!
Ich möchte aber zu Achsensymmetrie noch ergänzen, dass eine Konstante auch als gerader Exponent anzusehen ist, siehe unten.

> Wenn ich mich richtig erinnere, spielt nur der jeweils
> größte Exponent die entscheidende Rolle?? Wenn ja warum
> oder verwechsle ich da was?

Nein!!!

> Bsp.
>  [mm]f(x)=x^3+x^2[/mm] also punktsym. ???

Auch Nein!
Du hast es oben schon richtig geschrieben, da stand doch:
Achsensymmetrie - (gerade Exponenten)
besser wäre vielleicht gewesen
Achsensymmetrie - ( NUR gerade Exponenten)

Hier hast du als Exponenten die 3 und die 2. D. h. ungerade und gerade. Entsprechend liegt hier keine Symmetrie vor.

Ein Beispiel für Punktsymmetrie [zum Ursprung!]

$g(x) = [mm] -17x^7 +3x^3 [/mm] +0.3x$

Nur ungerade Exponenten...

Es gibt übrigens noch Punktsymmetrie zu einem Punkt (a,b). Hast du davon schon mal etwas gehört? So wie ich das verstehe, interessierst du dich nur für Punktsymmetrie zum Punkt (0,0) und da gilt eben dein Kriterium


Ein Beispiel für Achsensymmetrie

$h(x) = [mm] -37,5x^4 -1,013x^2 [/mm] + 5$

oder noch ein Bsp. Achsensymmetrie

$i(x) = [mm] x^6 [/mm] - [mm] 3x^4$ [/mm]

Nur gerade Exponenten

Mfg


Bezug
                
Bezug
Wdh. Symmetrie: PS
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 Mi 10.11.2010
Autor: Disap

Noch ein Nachtrag,

du meintest "nur größter Exponent ist wichtig"
Na ja, bei Symmetriebetrachtungen nicht. Aber falls dich das Verhalten im Unendlichen der Funktion interessiert, orientierst du dich am größten Exponten, d. h.

[mm] $\lim_{x\to \infty} -x^3 +x^2 [/mm] = ?$

[mm] $\lim_{x\to -\infty} 123x^{18} [/mm] - [mm] x^9 [/mm] = ?$

Und dann will ich noch sagen, das es auch hätte lauten können

[mm] $\lim_{x\to -\infty} [/mm]  - [mm] x^9 [/mm]  + [mm] 123x^{18}= [/mm] ?$

nicht unbedingt sind die Exponenten in aufsteigender/absteigender Reihenfolge geordnet. Lieber erst mal die ganze Funktion lesen!


Bezug
        
Bezug
Wdh. Symmetrie: Ergänzung
Status: (Antwort) fertig Status 
Datum: 19:55 Mi 10.11.2010
Autor: Loddar

Hallo Mary!


Die oben gemachten Angaben (Disaps Antwort) gelten ausschlißelich für ganzrationale Funktionen.

Allgemein gilt für gerade Funktionen: $f(-x) \ = \ f(+x)$

Bzw. für ungerade Funktionen $f(-x) \ = \ -f(+x)$ .

Ansonsten siehe auch mal MBhier.


Gruß
Loddar


Bezug
        
Bezug
Wdh. Symmetrie: Danke! :)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Do 11.11.2010
Autor: Mary2505

Dankeschön.
Jetzt weiß ich wieder, wo "nur der größte Exponent zählt..." hingehört!

lg
Mary

Bezug
                
Bezug
Wdh. Symmetrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:36 Do 11.11.2010
Autor: fred97


> Dankeschön.
>  Jetzt weiß ich wieder, wo "nur der größte Exponent
> zählt..." hingehört!

Wohin denn ?

FRED

>  
> lg
>  Mary


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]