www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraWelche Basis soll ich nehmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Welche Basis soll ich nehmen
Welche Basis soll ich nehmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Welche Basis soll ich nehmen: Frage
Status: (Frage) beantwortet Status 
Datum: 15:03 Sa 16.04.2005
Autor: wee

Hi,
ich habe folgende Aufgabe zu lösen.

"ich habe die Frage in keinen anderen Forum gestellt"

Sei [mm] f:K^2 \to K^2 [/mm] definiert durch [mm] \vektor{x\\y} \mapsto \vektor{2y\\x+y}. [/mm] Bestimme die darstellende Matrix. Kann man hier bedenkenlos von der Standartbasis ausgehen, da man bereits im Körper K und nicht in irgendein Vektorraum ist?

        
Bezug
Welche Basis soll ich nehmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Sa 16.04.2005
Autor: DaMenge

Hi

zuerst mal folgendes: der K² ist auf kanonische Weise ein K-Vektorraum und der Begriff "Basis" macht nur für (diesen) Vektorraum Sinn.

Nun zu deiner Frage: Es ist vollkommen unwichtig, welche Basis du betrachtest - wichtig ist nur, dass der Vektor $  [mm] v=\vektor{x \\ y} [/mm] $ ebenfalls in dieser Basis vorliegt.

Du suchst jetzt einfach  die Matrix $ A= [mm] \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm] $ , so dass $ A*v= [mm] \vektor{2y \\ x+y} [/mm] $ gilt.
Das bekommt man Zeilenweise recht schnell raus.

viele Grüße
DaMenge

Bezug
        
Bezug
Welche Basis soll ich nehmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Sa 16.04.2005
Autor: mathedman


> Sei [mm]f:K^2 \to K^2[/mm] definiert durch [mm]\vektor{x\\y} \mapsto \vektor{2y\\x+y}.[/mm]
> Bestimme die darstellende Matrix. Kann man hier bedenkenlos
> von der Standartbasis ausgehen,

Ja. Du musst einfach [mm]f((1,0)^t)[/mm] und [mm]f((0,1)^t)[/mm] bestimmen und in die Spalten der Matrix schreiben.
Man muss da vorsichtig sein: "Die" darstellende Matrix gibt es nicht. Man muss
sich vorher eine Basis für [mm]K^n[/mm] und eine für [mm]K^m[/mm] vorgeben (im allgemeinen Fall [mm]f: K^n \to K^m[/mm]).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]