Wellenlänge einer ebenen Welle < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:39 Sa 27.12.2008 | Autor: | yildi |
Aufgabe | Nach der Laufzeit 1,5 s und der Laufstrecke 250 m beträgt die Auslenkung einer ebenen Welle ¼ der Amplitude. Wie groß ist die Wellenlänge? (c = 300 m/s) |
Hallo! Bei dieser Aufgabe komm ich leider irgendwie nicht weiter...Kann mir jemand einen Tipp geben? Ganz besonders verwirrt mich, dass das s/t = 250m/1,5s nicht die 300m/s ergibt... was ist der unterschied zwischen v und c ? Vielen Dank für eure Hilfe!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:00 Sa 27.12.2008 | Autor: | Arnie09 |
Moin,
c entspricht der Lichtgeschwindigkeit und v ist die "normale" Geschwindigkeit.
Meine erste Idee wäre das über die Formel c = [mm] \lambda [/mm] * f zu lösen, allerdings bin ich mir da nicht umbedingt sicher, ob das dann auch so passt.
Die zweite Idee wäre, die Aufgabe über die Wellengleichung zu lösen: [mm] f(x,t)=A*sin(2*\pi*f(t-(x/c)+"phi"), [/mm] wobei A die Amplitude, f die Frequenz und "phi" der Winkel für die Phase. Da die Welle festlegt, wo sich die Welle zu dem Zeitpunkt befindet, wäre vll möglich, phi auf null zu setzen, wenn die Werte einer ganzen Wellenlänge eingesetzt werden. Die Amplitude ist zu dem Zeitpunkt t = 1,5s um 1/4 verstrichen, der Maximale Ausschlag ist dann bei 1000m. Die gesamte Laufstrecke bis eine Wellenlänge verstrichen ist, müsste dann bei 4000 m liegen, da die Welle dann wieder 2000m braucht, bis der nächste maximale Ausschlag erfolgen kann und danach wieder 1000 m um den "nächsten Anfangspunkt" zu erreichen. Da f=1/T kann dieser Wert dann für T eingesetzt werden und nach f umgeformt werden. Die Zeit t für die Strecke kann dann ebenfalls eingesetzt werden. Wenn die Formel dann nach x aufgelöst wird, müsste dann die Wellenlänge da stehen.
Ich hoffe mal, ich hab dich nicht zu sehr verwirrt. Ganz sicher bin ich mir nicht, neben der Möglichkeit dass die Amplitude bei 1000 erst den Vollausschlag hat, wäre es auch denkbar, dass bei 1000m eine Wellenlänge verstrichen ist und die Amplitudenangabe auf die gesamte Welle bezogen ist.
Lg
|
|
|
|