www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenWendetangenten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Wendetangenten
Wendetangenten < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wendetangenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 So 14.12.2008
Autor: Elisabeth17

Aufgabe
Für jedes t [mm] \not= [/mm] 0 ist eine Funktion [mm] f_t [/mm] gegeben durch [mm] f_t(x)= \bruch{4}{1+tx^{2}} [/mm]
a)  Untersuchen Sie [mm] K_t [/mm] auf Symmetrie, Schnittpunkte mit der x-Achse, usw.
b)  Bestimmen Sie die Ortslinie der Wendepunkte aller [mm] K_t [/mm]
c)  Für welchen Wert von t hat [mm] K_t [/mm] Wendetangenten mit den Steigungen 1 bzw. -1?

Guten Abend!

Ich habe gerade Schwierigkeiten mit Teilaufgabe c)
Eigentlich soll t /laut Lösung/ t= [mm] \bruch{12}{81} [/mm] betragen; ich komme jedoch auf ein anderes Ergebnis. Und frage mich: Was mache ich falsch?

Die Wendepunkte habe ich schon richtig ausgerechnet. Es sind [mm] W_1 (\wurzel{\bruch{1}{3t}} [/mm] |3) sowie [mm] W_2 [/mm] (- [mm] \wurzel{\bruch{1}{3t}} [/mm] |3)

Meine Überlegungen waren folgende:
Damit die Steigung an den Wendepunkten 1 (bzw. -1) beträgt, muss
[mm] f'(\wurzel{\bruch{1}{3t}}) [/mm] = 1
betragen.

f'(x)= [mm] \bruch{-8tx}{1+tx^{2}} [/mm]

[mm] \wurzel{\bruch{1}{3t}} [/mm] eingesetzt:

[mm] \bruch{-8t*\wurzel{\bruch{1}{3t}}}^{\bruch{4}{3}} [/mm] = 1

Das hab ich dann auf beiden Seiten potenziert, damit ich die Wurzel wegbekomme:

[mm] \bruch{64t^{2}*\bruch{1}{3t}}^{\bruch{16}{9}} [/mm] = 1
[mm] \bruch{64}{3}t [/mm] * [mm] \bruch{9}{16} [/mm] = 1
12t = 1
t = [mm] \bruch{1}{12} [/mm]

Das ist aber nicht korrekt, da die Lösung ja t= [mm] \bruch{12}{81} [/mm] vorgibt.
Kann mir jemand sagen, was ich falsch mache?

Vielen Dank für die Hilfe!
LG Eli


        
Bezug
Wendetangenten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 So 14.12.2008
Autor: kuemmelsche

Hallo Elisabeth17,

also ganz spontan ist mir deine erste Ableitung aufgefallen.

Also meine sieht irgendwie anders aus.

[mm] f(x)=\bruch{4}{1+tx^2}=4*(1+tx^2)^{-1}. [/mm] Meines Wissens muss da die Kettenregel her.

[mm] f'(x)=4*(-1)*(a+tx^2)^{-2}*2x=\bruch{-8tx}{(1+tx^2)^2}. [/mm]
f''(x) sieht bei mir dann bestimmt auch anders aus.

Mich wundert jetz nur, dass deine errechneten Wendepunkte richtig sind (nach Lösung?).

Sollte meine Ableitung wirklich falsch sein, dann bitte PM an mich^^.

lG Kai



Bezug
                
Bezug
Wendetangenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:29 So 14.12.2008
Autor: Elisabeth17

Ich hab mit der Quotientenregel dieselbe 1. Abl. raus wie du.
Daher stimmen die Wendepunkte.

Bei c) habe ich aber tatsächlich die Ableitung falsch übertragen und daher falsch weitergerechnet!

Natürlich bin ich so blöd und merk das nicht. :(
Vielen Dank dafür, dass du meinen Fehler erkannt hast!

LG Eli



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]