Wertebereich quadrat. Fkt. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo
Tut mir Leid, wenn dies das falsche Forum ist. Muss mich hier erst reindenken.
Muss dringend und schnellst möglich meine Hausaufgaben erledigen. Morgen ist Abgabe!
Ok, ich leg mal los:
Aufgabenstellung:
Berechne die Nullstellen der Funktion f und bestimme ihren Wertebereich. Gib den Scheitelpunkt der Funktion f an.
Ich weiß, ich sollte sowas wissen, aber es ist nunmal leider nicht so. Ich erwarte natürlich nicht, dass ihr mir meine Augaben löst, aber eine Erklärung wie man auf das Ergebnis kommt wäre sehr nett.
a) f(x)=x²+2x-3
noch ein Beispiel:
b) f(x)=-x2+2x+8
Das ganze handelt wie man sieht von quadratischen Funktionen.
Also, bitte sagt mir noch ein Mal wie man diese Sachen erschließt. Habe schon gesucht, aber nichts gefunden!
Danke im Vorraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Danke für die Antwort.
Verstehen tu ich das alles ehrlich gesagt noch nicht. Kein Wort wenn ich ehrlich sein soll. Ich benötige immer sehr ausführliche Erklärungen um zu verstehen. Wenn ich mir die Links anschaue, dann macht mich das leider nicht schlauer als vorher!
|
|
|
|
|
Danke nochmal...werde dann mal ein Bisschen lesen. Meine wichtigste und für mich schwierigste Frage ist jedoch, wie man den Wertebereich bestimmt!
Edit: Danke für die unternommene Hilfe. Hat mir nur leider nicht wirklich geholfen, aber trotzdem danke für den Versuch! Wenn ihr es dennoch versuchen wollt es mir beizubringen, dann sind weitere Antworten gern erwünscht.
|
|
|
|
|
Hi, braucheHilfe,
zunächst mal dreierlei:
(1) Dass der Graph einer Funktion mit der Gleichung [mm] y=x^{2}+2x-3 [/mm] oder auch [mm] y=-x^{2}+2x+8 [/mm] jeweils eine Parabel ist, weißt Du?
(2) Wie eine Parabel aussieht, weißt Du auch? (Schablone kaufen!)
(3) Und dass man am Vorzeichen beim [mm] x^{2} [/mm] erkennt, ob die Parabel nach oben (+) bzw. nach unten geöffnet ist, hast Du auch drauf?
Dann ist erst mal eine Hürde geschafft!
Nun musst Du Dir als nächstes klarmachen, dass bei einer nach oben geöffneten Parabel der Scheitel der tiefste Punkt und bei einer nach unten geöffneten Parabel der Scheitel der höchste Punkt des Graphen ist.
Da der Wertebereich die Menge der y-Koordinaten der Punkte des Funktionsgraphen ist, ist in jedem Fall die y-Koordinate des Scheitels RAND der Wertemenge, im ersten Fall unterer Rand, im zweiten Fall oberer Rand.
Der jeweils verbleibende "Rand" ist [mm] +\infty [/mm] oder [mm] -\infty.
[/mm]
Bleibt die Frage: Wie berechnet man die Koordinaten des Scheitels?
Stefan hat Dir gezeigt, wie man die "quadratische Ergänzung" benutzt.
Du kannst aber auch so vorgehen: Du setzt den Funktionsterm =0 und berechnest die Nullstellen (p/q-Formel). Dann liegt die x-Koordinate des Scheitels genau in der Mitte dazwischen. Um die y-Koordinate zu kriegen, setzt Du diesen Wert einfach in den Funktionsterm ein!
mfG!
Zwerglein
|
|
|
|
|
Danke nochmal an alle für die Mühe! Uns wurde alles nun im Unterricht erklärt und ich denke/hoffe ich kriege das morgen einigermaßen hin in der Klausur.
Ausserdem haben wir morgen auch unseren Grafischen Taschenrechner, den wir benutzen können dann dürfte das zu schaffen sein. Wäre nett wenn trotzdem nochmal jemand erklärt, was genau der Scheitelpunkt ist und wie man den berechnet! Ausserdem wäre es nett wenn ihr schreiben würdet, was wichtig für die Interpretation eines Graphen ist.
mfG
|
|
|
|
|
Dankeschön. Kommt etwas zu spät, aber troztdem danke...das habe ich gestern schon allein gefunden hat mir auch etwas geholfen nur leider habe ich in der Klauser nicht gut abgeschnitten. Habe 3 von 6 Aufgaben die allerdings scheinbar recht in Ordnung (richtig) sind!
Mit etwas Glück wird die Bewertung etwas angepasst, denn viele (fast alle) haben zwei der 6 Aufgaben nicht, da viele mit diesen nichts anfangen konnten. Habe nicht gedacht, dass die Lehrerin soviel mit dem Definitions- und Wertebereich macht, war aber dann leider der Fall und da war ich leider nicht so informiert. Geschehen ist geschehen und mit Glück sahne ich noch eine 4 ab.
mfG euer MatheProfi :D
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:31 Di 11.10.2005 | Autor: | informix |
Ich halte dir die Daumen!
Gruß informix
|
|
|
|
|
An Alle die es interessiert. Es ist immerhin eine 4 geworden. Mehr hätte ich auch nicht erwartet. Das was ich gemacht hatte war 90%ig richtig.
mfG
|
|
|
|