Wertebereich strecken - wie? < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:15 Di 25.08.2009 | Autor: | lach |
Hi,
folgendes Problem:
wir müssen für ein Uni-Projekt eine Auswertung von Suchmaschinen machen.
Nun haben wir uns eine Formel konstruiert, mit der die verschiedenen Qualitätsmaße als Faktoren in die Bewertung mit einfließen. Die einzelnen Faktoren liegen allesamt im bereich von 0-1. Bei der Multiplikation kommt dann eine sehr geringe Prozentzahl heraus (ca. 1-2%), obwohl es ein sehr gutes Ergebnis ist. Man kennt das ja von der Multiplikation von vielen Zahlen zwischen 0 und 1 ... die Zahl geht immer sehr nahe gegen 0. Wir hätten gerne eine "griffige" %-Bewertung, und da kommt es eher schlecht wenn Suchmaschine 1 mit 1,5% gegen Suchmaschine 2 mit 1,2% gewinnt ;)
Unsere Frage ist daher:
Wie können wir den Wertebereich etwas strecken, also näher an die 100% heran bringen, ohne Gefahr zu laufen, die 1 zu überschreiten?
Gibt es da einen halbwegs einfachen Weg? Wir stehen gerade total auf dem Schlauch.
Das Arithmetische Mittel aus den Faktoren zu bilden scheidet für uns leider aus.
Danke im Voraus,
Lars
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Hi,
>
> folgendes Problem:
>
> wir müssen für ein Uni-Projekt eine Auswertung von
> Suchmaschinen machen.
> Nun haben wir uns eine Formel konstruiert, mit der die
> verschiedenen Qualitätsmaße als Faktoren in die Bewertung
> mit einfließen. Die einzelnen Faktoren liegen allesamt im
> bereich von 0-1. Bei der Multiplikation kommt dann eine
> sehr geringe Prozentzahl heraus (ca. 1-2%), obwohl es ein
> sehr gutes Ergebnis ist. Man kennt das ja von der
> Multiplikation von vielen Zahlen zwischen 0 und 1 ... die
> Zahl geht immer sehr nahe gegen 0. Wir hätten gerne eine
> "griffige" %-Bewertung, und da kommt es eher schlecht wenn
> Suchmaschine 1 mit 1,5% gegen Suchmaschine 2 mit 1,2%
> gewinnt ;)
>
> Unsere Frage ist daher:
>
> Wie können wir den Wertebereich etwas strecken, also
> näher an die 100% heran bringen, ohne Gefahr zu laufen,
> die 1 zu überschreiten?
> Gibt es da einen halbwegs einfachen Weg? Wir stehen gerade
> total auf dem Schlauch.
> Das Arithmetische Mittel aus den Faktoren zu bilden
> scheidet für uns leider aus.
>
> Danke im Voraus,
> Lars
Hallo Lars,
um hier einen brauchbaren Tipp geben zu können,
müsste man Genaueres über die Art und Weise
wissen, wie hier aus verschiedenen Beobachtungs-
merkmalen eine Bewertung entstehen soll. Z.B. habe
ich im Moment keine Ahnung davon, für was deine
"Prozentzahlen" stehen und wie sie miteinander
kombiniert werden sollen. Bist du sicher, dass es
richtig ist, hier gewisse Zahlenwerte zu multiplizieren
statt beispielsweise zu addieren oder noch andere
Operationen darauf anzuwenden ?
LG Al-Chw.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:26 Di 25.08.2009 | Autor: | lach |
Hallo Al-Chwarizmi,
Es handelt sich um eine Studie, bei der jeder Nutzer eine Suchanfrage stellt und eine Bewertung für die ersten 10 Treffer seiner Suche abgibt. die verschiedenen Qualitätsmaße, die für jeden Treffer einzeln abgegeben werden müssen sind "Beschreibung", "Relevanz", "Abdeckung" und "Klickwahrscheinlichkeit" und werden jeweils auf einer Skala von 1-100 angegeben (diese Werte haben wir jeweils durch 100 geteilt um im Wertebereich von 0-1 zu bleiben).
Nun haben wir uns entschlossen, die Werte für jeden einzelnen Treffer miteinander zu multiplizieren, aus dem einfachen Grund, dass ein Wert von 0 in einem der 4 Qualitätsmaße sofort dazu führt, dass ein Treffer eine 0%-Bewertung erhält - "versagt" also ein Treffer auch nur in einem Bereich, wird er von uns als wertlos betrachtet. Aus diesem Grund scheidet an dieser Stelle das arithmetische Mittel aus, denn hier würde eine 0 in einem der Maße den Mittelwert ein wenig reduzieren - wir wollen aber, dass eine einzige 0 einen deutlich krasseren Effekt als z.B. eine 0,01 hat, und die beste und einfachste mir bekannte Lösung ist hier eine Multiplikation.
Nun haben wir eine %-Bewertung eines einzelnen Treffers. Anschließend mitteln wir die Bewertungen aller 10 Treffer einer Suchanfrage, und schließlich alle Suchanfragen der Nutzer. Aus dem finalen Mittelwert erhalten wir eine %-Bewertung für die gesamte Suchmaschine.
hier ein (bescheidener) Versuch einer mathematischen Darstellung, ich habs leider nicht so mit Formeln bauen, hoffe es ist trotzdem erkennbar was wir tun:
Bewertung Treffer = a*b*c*d , [mm] 0\le [/mm] a,b,c,d [mm] \ge [/mm] 1 -> a,b,c und d sind die verschiedenen Qualitätsmaße.
Bewertung Anfrage = arith. Mittel(Bewertung Treffer 1 bis Bewertung Treffer 10)
Bewertung Suchmaschine = arith. Mittel(Bewertung Anfrage 1 bis Bewertung Anfrage n)
Wir erhalten also am Ende eine %-Bewertung der Suchmaschine. Leider liegen die Ergebnisse alle im Bereich 0.01-0.02. Dies liegt ganz offensichtlich vor allem an der Multiplikation mehrerer Werte, die ihrerseits meistens deutlich unter 1 liegen.
Wir hätten wie gesagt gerne eine Möglichkeit, um unsere Ergebnisse stärker auf die 0-100%-Skala zu strecken. Einfach mit einer Zahl >1 zu multiplizieren ist selbstverständlich ausgeschlossen, denn dann könnten wir theoretisch eine Bewertung von über 100% bekommen, wenn a,b,c und d immer =1 sind ;)
Hoffe das Problem ist deutlicher geworden.
Gruß
-Lars
|
|
|
|
|
> Hallo Al-Chwarizmi,
>
> Es handelt sich um eine Studie, bei der jeder Nutzer eine
> Suchanfrage stellt und eine Bewertung für die ersten 10
> Treffer seiner Suche abgibt. die verschiedenen
> Qualitätsmaße, die für jeden Treffer einzeln abgegeben
> werden müssen sind "Beschreibung", "Relevanz", "Abdeckung"
> und "Klickwahrscheinlichkeit" und werden jeweils auf einer
> Skala von 1-100 angegeben (diese Werte haben wir jeweils
> durch 100 geteilt um im Wertebereich von 0-1 zu bleiben).
>
> Nun haben wir uns entschlossen, die Werte für jeden
> einzelnen Treffer miteinander zu multiplizieren, aus dem
> einfachen Grund, dass ein Wert von 0 in einem der 4
> Qualitätsmaße sofort dazu führt, dass ein Treffer eine
> 0%-Bewertung erhält - "versagt" also ein Treffer auch nur
> in einem Bereich, wird er von uns als wertlos betrachtet.
> Aus diesem Grund scheidet an dieser Stelle das
> arithmetische Mittel aus, denn hier würde eine 0 in einem
> der Maße den Mittelwert ein wenig reduzieren - wir wollen
> aber, dass eine einzige 0 einen deutlich krasseren Effekt
> als z.B. eine 0,01 hat, und die beste und einfachste mir
> bekannte Lösung ist hier eine Multiplikation.
>
> Nun haben wir eine %-Bewertung eines einzelnen Treffers.
> Anschließend mitteln wir die Bewertungen aller 10 Treffer
> einer Suchanfrage, und schließlich alle Suchanfragen der
> Nutzer. Aus dem finalen Mittelwert erhalten wir eine
> %-Bewertung für die gesamte Suchmaschine.
>
> hier ein (bescheidener) Versuch einer mathematischen
> Darstellung, ich habs leider nicht so mit Formeln bauen,
> hoffe es ist trotzdem erkennbar was wir tun:
>
> Bewertung Treffer = a*b*c*d , [mm]0\le[/mm] a,b,c,d [mm]\le[/mm] 1 -> a,b,c
> und d sind die verschiedenen Qualitätsmaße.
> Bewertung Anfrage = arith. Mittel(Bewertung Treffer 1 bis
> Bewertung Treffer 10)
> Bewertung Suchmaschine = arith. Mittel(Bewertung Anfrage 1
> bis Bewertung Anfrage n)
>
> Wir erhalten also am Ende eine %-Bewertung der
> Suchmaschine. Leider liegen die Ergebnisse alle im Bereich
> 0.01-0.02. Dies liegt ganz offensichtlich vor allem an der
> Multiplikation mehrerer Werte, die ihrerseits meistens
> deutlich unter 1 liegen.
>
> Wir hätten wie gesagt gerne eine Möglichkeit, um unsere
> Ergebnisse stärker auf die 0-100%-Skala zu strecken.
> Einfach mit einer Zahl >1 zu multiplizieren ist
> selbstverständlich ausgeschlossen, denn dann könnten wir
> theoretisch eine Bewertung von über 100% bekommen, wenn
> a,b,c und d immer =1 sind ;)
>
> Hoffe das Problem ist deutlicher geworden.
>
> Gruß
> -Lars
Hallo Lars,
ich kann nicht umhin, zuerst festzuhalten, dass es
sich bei dieser Methode nicht um eine "Studie",
sondern eher um eine ziemlich unbedarfte Bastelei
handelt.
Wenn wir aber schon beim Basteln sind - ich bin
auch ein ziemlich guter Bricoleur.
Wenn du also die Faktoren a,b,c,d, die allesamt
im Intervall [0....1] liegen, tendenziell vergrös-
sern, dabei aber die Null auf Null lassen und
andererseits nicht über die Eins hinausschießen
willst, so gäbe es z.B. die Möglichkeit, zuerst aus
den Zahlenwerten a,b,c,d die Werte [mm] a^{\*}=f(a) [/mm] ,
[mm] b^{\*}=f(b) [/mm] , [mm] c^{\*}=f(c) [/mm] , [mm] d^{\*}=f(d) [/mm] zu berechnen und dann
das Produkt [mm] a^{\*} b^{\*} c^{\*} d^{\*} [/mm] zu bilden.
Für f ist eine Funktion mit f(0)=0 , f(1)=1 nötig,
welche im Intervall [0....1] rechtsgekrümmt ist.
Mögliche Beispiele wären [mm] f(x)=\sqrt{x} [/mm] , [mm] f(x)=\sqrt[4]{x}
[/mm]
oder etwas allgemeiner [mm] f(x)=x^k [/mm] mit einem [mm] k\in(0....1) [/mm] .
Experimentiere damit einmal ein bisschen.
Für die Wissenschaftlichkeit des Verfahrens
übernehme ich allerdings keinerlei Verantwortung ...
LG Al-Chw.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:11 Di 25.08.2009 | Autor: | lach |
Hallo Al-Chwarizmi,
mach dir mal keine Sorgen über die mathematische Korrektheit, ich studiere keine Naturwissenschaft ;) ... es geht mehr um den Vergleich an sich - die %-Bewertung ist sozusagen das Sahnehäubchen ;)
Trotzdem natürlich vielen Dank, dein Bastelansatz gefällt mir sehr gut. Werden nun ein wenig mit den Wurzeln experimentieren.
Gruß
-Lars
|
|
|
|
|
> Hallo Al-Chwarizmi,
>
> mach dir mal keine Sorgen über die mathematische
> Korrektheit, ich studiere keine Naturwissenschaft ;) ... es
> geht mehr um den Vergleich an sich - die %-Bewertung ist
> sozusagen das Sahnehäubchen ;)
>
> Trotzdem natürlich vielen Dank, dein Bastelansatz gefällt
> mir sehr gut. Werden nun ein wenig mit den Wurzeln
> experimentieren.
>
> Gruß
> -Lars
Hallo Lars,
ich LACH manchmal auch ganz gehörig, wenn es
in Werbespots z.B. heisst, dieses Shampoo erhöhe
die Geschmeidigkeit der Haare um 67% oder jene
Zahnpaste schütze um 48% besser vor Karies als
durchschnittlich. Bei solchen Behauptungen kann
man praktisch sicher sein, dass es sich um unwis-
senschaftliche Aussagen handelt - die aber in ihrem
dünnen mathematisch angehauchten Mäntelchen
offenbar doch Eindruck machen - andernfalls kann
ich mir nicht vorstellen, dass sie so häufig verwen-
det werden. Werbeleute untersuchen bestimmt
auch die Frage: "Welchen Erfolg haben Werbebot-
schaften, in welchen konkrete Prozentangaben
über die Wirksamkeit eines Produktes gemacht
werden ?"
LG und schönen Abend !
|
|
|
|