www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenWie kann man sich das vorstell
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Wie kann man sich das vorstell
Wie kann man sich das vorstell < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie kann man sich das vorstell: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:01 Di 22.01.2008
Autor: philipp-100

Hallo,
ich muss folgende Aufgabe lösen:

[mm] -(3*\pi)/7 \le [/mm] (z-i) [mm] \le -\pi/4 [/mm]

wie kann ich mir das mit den (z-i) vorstellen.

Meine Lösung lautet noch wie folgt.

2 Winkelhalbierenden die nach unten gerichtet sind und den gemeinsamen Punkt (0/1) haben

0/1 deswegen,weil ja (z-i) da steht, und -1 ja auf der Imaginären Achse einzutragen ist.

Ich weiss, das ist einfach gedacht.
Vielleicht hat ja jemand mehr Ahung als ich.
Viele Grüße
Philipp

        
Bezug
Wie kann man sich das vorstell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Di 22.01.2008
Autor: pelzig

Du solltest die Aufgabenstellung ein bisschen klarer formulieren. Ich nehme an du sollst alle [mm] $z\in\IC$ [/mm] bestimmen, die diese Ungleichung erfüllen. Das macht aber kein Sinn, da es auf [mm] $\IC$ [/mm] kein [mm] $\le$ [/mm] gibt.

Bezug
                
Bezug
Wie kann man sich das vorstell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Di 22.01.2008
Autor: statler


> Du solltest die Aufgabenstellung ein bisschen klarer
> formulieren. Ich nehme an du sollst alle [mm]z\in\IC[/mm] bestimmen,
> die diese Ungleichung erfüllen. Das macht aber kein Sinn,
> da es auf [mm]\IC[/mm] kein [mm]\le[/mm] gibt. Soll es vielleicht [mm]|z-i|[/mm]
> heißen?

Im Prinzip ein guter Gedanke, aber der Betrag ist immer positiv, kann also nicht zwischen 2 negativen Zahlen liegen. Vielleicht soll z so bestimmt werden, daß z-i reell ist und die Ungl. erfüllt? Eine mysteriöse Angelegenheit...

Gruß
Dieter

Bezug
        
Bezug
Wie kann man sich das vorstell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Di 22.01.2008
Autor: philipp-100

Sorry, da hab ich leider was falsch hingeschrieben.
es muss heissen:
[mm] (-3\pi)/4\le [/mm] arg(z-i) [mm] \le -\pi/4 [/mm]

Bezug
                
Bezug
Wie kann man sich das vorstell: Antwort
Status: (Antwort) fertig Status 
Datum: 07:03 Mi 23.01.2008
Autor: Leopold_Gast

[mm]\arg w[/mm] ist der Winkel einer komplexen Zahl. Die Winkelhalbierende des III. Quadranten ([mm]\arg w = - \frac{3}{4} \pi[/mm]) und des IV. Quadranten ([mm]\arg w = - \frac{1}{4} \pi[/mm]) begrenzen ein rechtwinkliges Winkelfeld. Das ist mit [mm]- \frac{3}{4} \pi \leq \arg w \leq - \frac{1}{4} \pi[/mm] gemeint. Und jetzt ist [mm]w = z - \operatorname{i}[/mm], also [mm]z = w + \operatorname{i}[/mm]. Das entspricht einer Translation um 1 nach oben. Der Winkel hat dann seinen Scheitel bei [mm]\operatorname{i}[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]